IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v63y2019ic6.html
   My bibliography  Save this article

Methodological study of evaluating the traceability of neodymium based on the global substance flow analysis and Monte Carlo simulation

Author

Listed:
  • Morimoto, Shinichirou
  • Sanematsu, Kenzo
  • Ozaki, Kimihiro
  • Ozawa, Akito
  • Seo, Yuna

Abstract

Neodymium is a particularly important mineral among rare earth elements (REE) and is used in NdFeB magnets in many motors and electronic devices. In recent years, by the extremely rapid growth in the demand for neodymium, many substance flow analysis (SFA) studies have been conducted to evaluate the global flow and stock of neodymium and to analyze its recycling potential. However, illegal mining, unknown trading and end-of-life (EOL) based recycle of mineral resources such as REE cannot be quantitatively evaluated using only publicly available data. Their actual quantities involved in these activities are greatly affected by politics and production economics in countries such as China, Russia, India, etc Therefore, the lack of knowledge of the quantity of neodymium in existence is an urgent problem for the industrial sector. Accordingly, in recent years, a variety of initiatives centered in Europe have been considered to clarify its traceability.

Suggested Citation

  • Morimoto, Shinichirou & Sanematsu, Kenzo & Ozaki, Kimihiro & Ozawa, Akito & Seo, Yuna, 2019. "Methodological study of evaluating the traceability of neodymium based on the global substance flow analysis and Monte Carlo simulation," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
  • Handle: RePEc:eee:jrpoli:v:63:y:2019:i:c:6
    DOI: 10.1016/j.resourpol.2019.101448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420719300315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2019.101448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoyue Du & T. E. Graedel, 2011. "Global Rare Earth In‐Use Stocks in NdFeB Permanent Magnets," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 836-843, December.
    2. Packey, Daniel J. & Kingsnorth, Dudley, 2016. "The impact of unregulated ionic clay rare earth mining in China," Resources Policy, Elsevier, vol. 48(C), pages 112-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elisa Alonso & David G. Pineault & Joseph Gambogi & Nedal T. Nassar, 2023. "Mapping first to final uses for rare earth elements, globally and in the United States," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 312-322, February.
    2. Elisa Alonso & David Pineault & Nedal T. Nassar, 2023. "Streamlined approach for assessing embedded consumption of lithium and cobalt in the United States," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 33-42, February.
    3. Jingxuan Geng & Han Hao & Xin Sun & Dengye Xun & Zongwei Liu & Fuquan Zhao, 2021. "Static material flow analysis of neodymium in China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 114-124, February.
    4. Becerra, Miguel & Jerez, Alejandro & Garcés, Hugo O. & Demarco, Rodrigo, 2022. "Copper price: A brief analysis of China’s impact over its short-term forecasting," Resources Policy, Elsevier, vol. 75(C).
    5. Zhu, Xiangyan & Geng, Yong & Gao, Ziyan & Tian, Xu & Xiao, Shijiang & Houssini, Khaoula, 2023. "Investigating zirconium flows and stocks in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingxuan Geng & Han Hao & Xin Sun & Dengye Xun & Zongwei Liu & Fuquan Zhao, 2021. "Static material flow analysis of neodymium in China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 114-124, February.
    2. Schmid, Marc, 2019. "Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    3. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    4. Song, Ying & Bouri, Elie & Ghosh, Sajal & Kanjilal, Kakali, 2021. "Rare earth and financial markets: Dynamics of return and volatility connectedness around the COVID-19 outbreak," Resources Policy, Elsevier, vol. 74(C).
    5. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    6. Brown, Maxwell & Eggert, Roderick, 2018. "Simulating producer responses to selected chinese rare earth policies," Resources Policy, Elsevier, vol. 55(C), pages 31-48.
    7. Viebahn, Peter & Soukup, Ole & Samadi, Sascha & Teubler, Jens & Wiesen, Klaus & Ritthoff, Michael, 2015. "Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 655-671.
    8. Ba, Bocar Samba & Combes-Motel, Pascale & Schwartz, Sonia, 2020. "Challenging pollution and the balance problem from rare earth extraction: how recycling and environmental taxation matter," Environment and Development Economics, Cambridge University Press, vol. 25(6), pages 634-656, December.
    9. Schmid Marc, 2019. "Kritische Rohstoffe – Die Achillesverse der USA im Wettstreit mit China," Zeitschrift für Wirtschaftspolitik, De Gruyter, vol. 68(3), pages 309-330, December.
    10. Lee, Yurim & Dacass, Tennecia, 2022. "Reducing the United States’ risks of dependency on China in the rare earth market," Resources Policy, Elsevier, vol. 77(C).
    11. Frank MICHELBERGER & Hirut GROSSBERGER & Peter JUDMAIER, 2015. "Rare Earth Elements In Railway Infrastructure – Potentials For An Information System As A Tool For Operators And Other Stakeholders," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 10(SE), pages 111-124, December.
    12. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.
    13. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    14. Glöser-Chahoud, Simon & Kühn, André & Tercero Espinoza, Luis Alberto, 2016. "Globale Verwendungsstrukturen der Magnetwerkstoffe Neodym und Dysprosium: Eine szenariobasierte Analyse der Auswirkung der Diffusion der Elektromobilität auf den Bedarf an Seltenen Erden," Working Papers "Sustainability and Innovation" S05/2016, Fraunhofer Institute for Systems and Innovation Research (ISI).
    15. Waldemar Marz, 2019. "Complex dimensions of climate policy: the role of political economy, capital markets, and urban form," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 85.
    16. Erika Machacek & Jessika Luth Richter & Ruth Lane, 2017. "Governance and Risk–Value Constructions in Closing Loops of Rare Earth Elements in Global Value Chains," Resources, MDPI, vol. 6(4), pages 1-25, October.
    17. Machacek, Erika & Kalvig, Per, 2016. "Assessing advanced rare earth element-bearing deposits for industrial demand in the EU," Resources Policy, Elsevier, vol. 49(C), pages 186-203.
    18. Xiao, Shijiang & Geng, Yong & Rui, Xue & Su, Chang & Yao, Tianli, 2022. "Behind of the criticality for rare earth elements: Surplus of China’s yttrium," Resources Policy, Elsevier, vol. 76(C).
    19. Imholte, D.D. & Nguyen, R.T. & Vedantam, A. & Brown, M. & Iyer, A. & Smith, B.J. & Collins, J.W. & Anderson, C.G. & O’Kelley, B., 2018. "An assessment of U.S. rare earth availability for supporting U.S. wind energy growth targets," Energy Policy, Elsevier, vol. 113(C), pages 294-305.
    20. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & McLellan, Benjamin Craig, 2021. "Catastrophe progression method - path (CPM-PATH) early warning analysis of Chinese rare earths industry security," Resources Policy, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:63:y:2019:i:c:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.