IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v55y2018icp55-61.html
   My bibliography  Save this article

Copper price estimation using bat algorithm

Author

Listed:
  • Dehghani, Hesam
  • Bogdanovic, Dejan

Abstract

The most effective parameter on the value of mining projects is metal price volatility. Therefore, knowing the metal price volatility can help the managers and shareholders of the mining projects to make the right decisions for extending or restricting the mining activities. Nowadays, classical estimation methods cannot correctly estimate the metal prices volatility due to their frequent variations in the past years. For solving this problem, it is necessary to use the artificial algorithms that have a good ability to predict the volatility of the various phenomena. In this paper, the Bat algorithm was used to predict the copper price volatility. Accordingly, Brownian motion with mean reversion (BMMR) was chosen as the most suitable time series function with the root mean square error (RMSE) of 0.449. Then, the estimation parameters of the equation were modified using Bat algorithm. Finally, it is concluded that the determined equation with 0.132 of RMSE can predict the copper price better than the classic estimation methods.

Suggested Citation

  • Dehghani, Hesam & Bogdanovic, Dejan, 2018. "Copper price estimation using bat algorithm," Resources Policy, Elsevier, vol. 55(C), pages 55-61.
  • Handle: RePEc:eee:jrpoli:v:55:y:2018:i:c:p:55-61
    DOI: 10.1016/j.resourpol.2017.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420717303999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2017.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    2. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
    3. Liu, Chang & Hu, Zhenhua & Li, Yan & Liu, Shaojun, 2017. "Forecasting copper prices by decision tree learning," Resources Policy, Elsevier, vol. 52(C), pages 427-434.
    4. Morales, Lucía & Andreosso-O'Callaghan, Bernadette, 2011. "Comparative analysis on the effects of the Asian and global financial crises on precious metal markets," Research in International Business and Finance, Elsevier, vol. 25(2), pages 203-227, June.
    5. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    6. Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
    7. Dehghani, Hesam & Ataee-pour, Majid & Esfahanipour, Akbar, 2014. "Evaluation of the mining projects under economic uncertainties using multidimensional binomial tree," Resources Policy, Elsevier, vol. 39(C), pages 124-133.
    8. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    9. Dehghani, Hesam & Ataee-pour, Majid, 2012. "Determination of the effect of operating cost uncertainty on mining project evaluation," Resources Policy, Elsevier, vol. 37(1), pages 109-117.
    10. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz-Borrego, Francisco J. & Escobar-Peréz, Bernabé & Miras-Rodríguez, María del Mar, 2021. "Estimating copper concentrates benchmark prices under dynamic market conditions," Resources Policy, Elsevier, vol. 70(C).
    2. Kamel, Ahmed & Elwageeh, Mohamed & Bonduà, Stefano & Elkarmoty, Mohamed, 2023. "Evaluation of mining projects subjected to economic uncertainties using the Monte Carlo simulation and the binomial tree method: Case study in a phosphate mine in Egypt," Resources Policy, Elsevier, vol. 80(C).
    3. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
    4. Guo, Hongquan & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam, 2021. "Forecasting mining capital cost for open-pit mining projects based on artificial neural network approach," Resources Policy, Elsevier, vol. 74(C).
    5. Mardones, Cristian & del Rio, Ricardo, 2019. "Correction of Chilean GDP for natural capital depreciation and environmental degradation caused by copper mining," Resources Policy, Elsevier, vol. 60(C), pages 143-152.
    6. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Pradhan, Biswajeet & Mai, Ngoc-Luan & Vu, Diep-Anh, 2021. "Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms," Resources Policy, Elsevier, vol. 73(C).
    7. Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
    8. Yishun Liu & Chunhua Yang & Keke Huang & Weiping Liu, 2023. "A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, February.
    9. Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
    10. Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
    11. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    12. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    13. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    14. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    15. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    16. Shen, Junjie & Huang, Shupei, 2022. "Copper cross-market volatility transition based on a coupled hidden Markov model and the complex network method," Resources Policy, Elsevier, vol. 75(C).
    17. Ana Lazcano & Pedro Javier Herrera & Manuel Monge, 2023. "A Combined Model Based on Recurrent Neural Networks and Graph Convolutional Networks for Financial Time Series Forecasting," Mathematics, MDPI, vol. 11(1), pages 1-21, January.
    18. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni & Rajpurohit, Sohan Singh, 2020. "Determination of optimum cut-off grade of an open-pit metalliferous deposit under various limiting conditions using a linearly advancing algorithm derived from dynamic programming," Resources Policy, Elsevier, vol. 66(C).
    19. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    20. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    21. Cifuentes, Sebastián & Cortazar, Gonzalo & Ortega, Hector & Schwartz, Eduardo S., 2020. "Expected prices, futures prices and time-varying risk premiums: The case of copper," Resources Policy, Elsevier, vol. 69(C).
    22. Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
    23. Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
    24. Zheng, Shuxian & Tan, Zhanglu & Xing, Wanli & Zhou, Xuanru & Zhao, Pei & Yin, Xiuqi & Hu, Han, 2022. "A comparative exploration of the chaotic characteristics of Chinese and international copper futures prices," Resources Policy, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    2. Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
    3. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    4. Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
    5. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    6. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    7. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    8. Becerra, Miguel & Jerez, Alejandro & Garcés, Hugo O. & Demarco, Rodrigo, 2022. "Copper price: A brief analysis of China’s impact over its short-term forecasting," Resources Policy, Elsevier, vol. 75(C).
    9. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2020. "Point and interval forecasting for metal prices based on variational mode decomposition and an optimized outlier-robust extreme learning machine," Resources Policy, Elsevier, vol. 69(C).
    10. Cifuentes, Sebastián & Cortazar, Gonzalo & Ortega, Hector & Schwartz, Eduardo S., 2020. "Expected prices, futures prices and time-varying risk premiums: The case of copper," Resources Policy, Elsevier, vol. 69(C).
    11. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    12. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    13. Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
    14. Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Resources Policy, Elsevier, vol. 74(C).
    15. Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
    16. Parviz Sohrabi & Hesam Dehghani & Behshad Jodeiri Shokri, 2022. "Determination of optimal production rate under price uncertainty—Sari Gunay gold mine, Iran," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(2), pages 187-201, June.
    17. Su, Chi-Wei & Wang, Xiao-Qing & Zhu, Haotian & Tao, Ran & Moldovan, Nicoleta-Claudia & Lobonţ, Oana-Ramona, 2020. "Testing for multiple bubbles in the copper price: Periodically collapsing behavior," Resources Policy, Elsevier, vol. 65(C).
    18. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    19. Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
    20. Wang, Jianzhou & Niu, Xinsong & Zhang, Linyue & Lv, Mengzheng, 2021. "Point and interval prediction for non-ferrous metals based on a hybrid prediction framework," Resources Policy, Elsevier, vol. 73(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:55:y:2018:i:c:p:55-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.