Advanced Search
MyIDEAS: Login

The Environmental sustainability of mining in Australia: key mega-trends and looming constraints

Contents:

Author Info

  • Mudd, Gavin M.
Registered author(s):

    Abstract

    At first 'sustainable mining' could be perceived as a paradox--minerals are widely held to be finite resources with rising consumption causing pressure on known resources. The true sustainability of mineral resources, however, is a much more complex picture and involves exploration, technology, economics, social and environmental issues, and advancing scientific knowledge--predicting future sustainability is therefore not a simple task. This paper presents the results from a landmark study on historical trends in Australian mining, including ore milled, ore grades, open cut versus underground mining, overburden/waste rock and economic resources. When complete data sets are compiled for specific metals, particular issues stand out with respect to sustainability--technological breakthroughs (e.g. flotation, carbon-in-pulp), new discoveries (e.g. uranium or U), price changes (e.g. Au, boom/bust cycles), social issues (e.g. strikes), etc. All of these issues are of prime importance in moving towards a semi-quantitative sustainability model of mineral resources and the mining industry. For the future, critical issues will continue to be declining ore grades (also ore quality and impurities), increased waste rock and associated liabilities, known economic resources, potential breakthrough technologies, and broader environmental constraints (e.g. carbon costs, water). For this latter area, many companies now report annually on sustainability performance--facilitating analysis of environmental sustainability with respect to production performance. By linking these two commonly disparate aspects--mining production and environmental/sustainability data--it becomes possible to better understand environmental sustainability and predict future constraints such as water requirements, greenhouse emissions, energy and reagent inputs, and the like. This paper will therefore present a range of fundamental data and issues which help towards quantifying the resource and environmental sustainability of mining--with critical implications for the mining industry and society as a whole.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6VBM-4Y52J5D-1/2/e4baee681d962e1d56eefdf49eb99e2d
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Resources Policy.

    Volume (Year): 35 (2010)
    Issue (Month): 2 (June)
    Pages: 98-115

    as in new window
    Handle: RePEc:eee:jrpoli:v:35:y:2010:i:2:p:98-115

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/inca/30467

    Related research

    Keywords: Sustainable mining Mineral resources Resource intensity Greenhouse emissions Climate change Environmental impacts Life cycle analysis Australia;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Cowell, Sarah J. & Wehrmeyer, Walter & Argust, Peter W. & Robertson, J. Graham S., 1999. "Sustainability and the primary extraction industries: theories and practice," Resources Policy, Elsevier, vol. 25(4), pages 277-286, December.
    2. Fthenakis, Vasilis & Wang, Wenming & Kim, Hyung Chul, 2009. "Life cycle inventory analysis of the production of metals used in photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 493-517, April.
    3. Mudd, Gavin M., 2007. "Global trends in gold mining: Towards quantifying environmental and resource sustainability," Resources Policy, Elsevier, vol. 32(1-2), pages 42-56.
    4. Garcia, Patricio & Knights, Peter F. & Tilton, John E., 2001. "Labor productivity and comparative advantage in mining:: the copper industry in Chile," Resources Policy, Elsevier, vol. 27(2), pages 97-105, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Ololade, Olusola O. & Annegarn, Harold J., 2013. "Contrasting community and corporate perceptions of sustainability: A case study within the platinum mining region of South Africa," Resources Policy, Elsevier, vol. 38(4), pages 568-576.
    2. Filippou, Dimitrios & King, Michael G., 2011. "R&D prospects in the mining and metals industry," Resources Policy, Elsevier, vol. 36(3), pages 276-284, September.
    3. Mardi Dungey & Renee Fry-McKibbin & Verity Linehan, 2014. "Chinese resource demand and the natural resource supplier," Applied Economics, Taylor & Francis Journals, vol. 46(2), pages 167-178, January.
    4. Franks, Daniel M. & Boger, David V. & Côte, Claire M. & Mulligan, David R., 2011. "Sustainable development principles for the disposal of mining and mineral processing wastes," Resources Policy, Elsevier, vol. 36(2), pages 114-122, June.
    5. Vintró, Carla & Fortuny, Jordi & Sanmiquel, Lluís & Freijo, Modesto & Edo, Joaquín, 2012. "Is corporate social responsibility possible in the mining sector? Evidence from Catalan companies," Resources Policy, Elsevier, vol. 37(1), pages 118-125.
    6. Moran, C.J. & Franks, D.M. & Sonter, L.J., 2013. "Using the multiple capitals framework to connect indicators of regional cumulative impacts of mining and pastoralism in the Murray Darling Basin, Australia," Resources Policy, Elsevier, vol. 38(4), pages 733-744.
    7. Florian Fizaine & Victor Court, 2014. "Energy transition toward renewables and metal depletion: an approach through the EROI concept," Working Papers 1407, Chaire Economie du Climat.
    8. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    9. Arvesen, Anders & Hertwich, Edgar G., 2012. "Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5994-6006.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:35:y:2010:i:2:p:98-115. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.