IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v99y2022ics0966692322000199.html
   My bibliography  Save this article

Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique

Author

Listed:
  • Pueboobpaphan, Rattaphol
  • Pueboobpaphan, Suthatip
  • Sukhotra, Suthasinee

Abstract

The acceptable walking distance (AWD) to public transit is a key design input for transit-oriented development. However, standard guidelines for determining the AWD may not be appropriate for Thailand because of its tropical climate. In this study, the AWD to public transit in Bangkok was determined. A stated preference technique called the price sensitivity meter was applied to examining the AWD to metro and bus stations. Respondents were asked to consider two scenarios: the current scenario unsuitable for walking and a hypothetical more suitable scenario with increased shade. The results showed that the AWD was less for Bangkok than that suggested by standard methods. The AWD was greater for outlying areas than for the central business district and for metro stations than for bus stops. However, no relation was found between the walking distances and sociodemographic factors or trip characteristics. The average and maximum AWD were consistent with that obtained by studies for Bangkok and station spacing in the study area, respectively. The results also suggest that the maximum AWD can simply be estimated from the 65th–70th percentile of the responses to the Far question. Improving the walking environment would increase the maximum AWD by 1.6–1.77 times.

Suggested Citation

  • Pueboobpaphan, Rattaphol & Pueboobpaphan, Suthatip & Sukhotra, Suthasinee, 2022. "Acceptable walking distance to transit stations in Bangkok, Thailand: Application of a stated preference technique," Journal of Transport Geography, Elsevier, vol. 99(C).
  • Handle: RePEc:eee:jotrge:v:99:y:2022:i:c:s0966692322000199
    DOI: 10.1016/j.jtrangeo.2022.103296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692322000199
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2022.103296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dennis van Soest & Miles R. Tight & Christopher D. F. Rogers, 2020. "Exploring the distances people walk to access public transport," Transport Reviews, Taylor & Francis Journals, vol. 40(2), pages 160-182, March.
    2. Rahul, T.M. & Verma, Ashish, 2014. "A study of acceptable trip distances using walking and cycling in Bangalore," Journal of Transport Geography, Elsevier, vol. 38(C), pages 106-113.
    3. Zuo, Ting & Wei, Heng & Rohne, Andrew, 2018. "Determining transit service coverage by non-motorized accessibility to transit: Case study of applying GPS data in Cincinnati metropolitan area," Journal of Transport Geography, Elsevier, vol. 67(C), pages 1-11.
    4. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    5. Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
    6. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    7. Daniel Hess, 2012. "Walking to the bus: perceived versus actual walking distance to bus stops for older adults," Transportation, Springer, vol. 39(2), pages 247-266, March.
    8. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    9. Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
    10. Jacobson, Justin & Forsyth, Ann, 2008. "Seven American TODs: Good Practices for Urban Design in Transit-Oriented Development Projects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 1(2), pages 51-88.
    11. John Zacharias & Qi Zhao, 2018. "Local environmental factors in walking distance at metro stations," Public Transport, Springer, vol. 10(1), pages 91-106, May.
    12. Craig Townsend & John Zacharias, 2010. "Built environment and pedestrian behavior at rail rapid transit stations in Bangkok," Transportation, Springer, vol. 37(2), pages 317-330, March.
    13. Tipakornkiat, Chalat & Limanond, Thirayoot & Kim, Hyunmyung, 2012. "Determining an influencing area affecting walking speed on footpath: A case study of a footpath in CBD Bangkok, Thailand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5453-5464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Telan Wu & Hui Jin & Xiaoguang Yang, 2022. "To What Extent May Transit Stop Spacing Be Increased before Driving Away Riders? Referring to Evidence of the 2017 NHTS in the United States," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gan, Zuoxian & Yang, Min & Zeng, Qingcheng & Timmermans, Harry J.P., 2021. "Associations between built environment, perceived walkability/bikeability and metro transfer patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 171-187.
    2. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    3. Gupta, Akshay & Bivina, G.R. & Parida, Manoranjan, 2022. "Does neighborhood design matter for walk access to metro stations? An integrated SEM-Hybrid discrete mode choice approach," Transport Policy, Elsevier, vol. 121(C), pages 61-77.
    4. Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
    5. Tao, Tao & Wang, Jueyu & Cao, Xinyu, 2020. "Exploring the non-linear associations between spatial attributes and walking distance to transit," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. David S Vale & Mauro Pereira, 2017. "The influence of the impedance function on gravity-based pedestrian accessibility measures: A comparative analysis," Environment and Planning B, , vol. 44(4), pages 740-763, July.
    7. Yang, Jiawen & Su, Pinren & Cao, Jason, 2020. "On the importance of Shenzhen metro transit to land development and threshold effect," Transport Policy, Elsevier, vol. 99(C), pages 1-11.
    8. Sun, Guibo & Wallace, Dugald & Webster, Chris, 2020. "Unravelling the impact of street network structure and gated community layout in development-oriented transit design," Land Use Policy, Elsevier, vol. 90(C).
    9. Mingzhu Song & Yi Zhang & Meng Li & Yi Zhang, 2021. "Accessibility of Transit Stops with Multiple Feeder Modes: Walking and Private-Bike Cycling," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    10. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    11. O'Connor, David & Caulfield, Brian, 2018. "Level of service and the transit neighbourhood - Observations from Dublin city and suburbs," Research in Transportation Economics, Elsevier, vol. 69(C), pages 59-67.
    12. Venter, Christoffel J., 2020. "Measuring the quality of the first/last mile connection to public transport," Research in Transportation Economics, Elsevier, vol. 83(C).
    13. Xia Li & Zhenyu Liu & Xinwei Ma, 2022. "Measuring Access and Egress Distance and Catchment Area of Multiple Feeding Modes for Metro Transferring Using Survey Data," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    14. John HE Taplin & Yuchao Sun, 2020. "Optimizing bus stop locations for walking access: Stops-first design of a feeder route to enhance a residential plan," Environment and Planning B, , vol. 47(7), pages 1237-1259, September.
    15. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    16. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    17. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    18. Azad, Mojdeh & Abdelqader, Dua & Taboada, Luis M. & Cherry, Christopher R., 2021. "Walk-to-transit demand estimation methods applied at the parcel level to improve pedestrian infrastructure investment," Journal of Transport Geography, Elsevier, vol. 92(C).
    19. Abenoza, Roberto F. & Liu, Chengxi & Cats, Oded & Susilo, Yusak O., 2019. "What is the role of weather, built-environment and accessibility geographical characteristics in influencing travelers’ experience?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 34-50.
    20. Olga Tzanni & Paraskevas Nikolaou & Stella Giannakopoulou & Apostolos Arvanitis & Socrates Basbas, 2022. "Social Dimensions of Spatial Justice in the Use of the Public Transport System in Thessaloniki, Greece," Land, MDPI, vol. 11(11), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:99:y:2022:i:c:s0966692322000199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.