IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v87y2020ics0966692319302285.html
   My bibliography  Save this article

Exploring tertiary students' travel mode choices in Auckland: Insights and policy implications

Author

Listed:
  • Mohammadzadeh, Mohsen

Abstract

It is crucial that policymakers and public transport operators comprehend tertiary students' travel mode choices and understand the factors that inform these choices in order to manage travel demands effectively and to optimise the use of public transport and improve its quality of service, particularly during the peak hours. This study aims to examine tertiary students' travel mode choices in Auckland, which is recognised as one of the most car-dependent cities in the world. The city is struggling with traffic congestion, particularly around its Central Business District (CBD) during peak hours. Auckland is New Zealand's largest city, with a population of 1.4 million residents. The main campuses of two major public universities, The University of Auckland (UoA) and Auckland University of Technology (AUT), are located in the CBD, attracting a large number of daily trips by both staff and students, particularly during the teaching semesters. However, there is a limited understanding of tertiary students' travel mode choices, particularly the factors that inform these choices when they travel to the universities' city campuses. A mixed methodology approach was used to comprehend the travel mode choices of students attending The University of Auckland and to identify the key factors that are drivers of these choices. The data collection included a questionnaire-based survey, which received 249 responses, and 10 semi-structured interviews with students. Thematic analysis was utilised to codify and then analyse the interviews. Despite the significant car dependency in Auckland, the survey demonstrated that most respondents utilised public transport and active modes when commuting to the university's city campus. Seven factors were identified that inform tertiary students' travel mode choices: cost, parking availability and cost, access to a car, travel time, physical environment, reliability, and attitudinal variables. The interviewees mostly argued that travel cost and lack of or limited access to a private car were the primary drivers of their travel mode choices. The study suggests that different stakeholders, such as Auckland Transport (AT) and The University of Auckland, should work collaboratively to provide an inclusive travel demand management policy. The university could rearrange classes for off-peak hours, and AT could offer tertiary students further discounts during these hours. These actions would result in the optimisation of public transport efficiency, improvement of the quality of the public transport service, and mitigation of traffic congestion around Auckland's Central Business District (CBD).

Suggested Citation

  • Mohammadzadeh, Mohsen, 2020. "Exploring tertiary students' travel mode choices in Auckland: Insights and policy implications," Journal of Transport Geography, Elsevier, vol. 87(C).
  • Handle: RePEc:eee:jotrge:v:87:y:2020:i:c:s0966692319302285
    DOI: 10.1016/j.jtrangeo.2020.102788
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319302285
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    2. Mokhtarian, Patricia L. & Salomon, Ilan, 2001. "How derived is the demand for travel? Some conceptual and measurement considerations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 695-719, September.
    3. Rotaris, Lucia & Danielis, Romeo, 2015. "Commuting to college: The effectiveness and social efficiency of transportation demand management policies," Transport Policy, Elsevier, vol. 44(C), pages 158-168.
    4. Guiver, J.W., 2007. "Modal talk: Discourse analysis of how people talk about bus and car travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(3), pages 233-248, March.
    5. Páez, Antonio & Whalen, Kate, 2010. "Enjoyment of commute: A comparison of different transportation modes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 537-549, August.
    6. Beirão, Gabriela & Sarsfield Cabral, J.A., 2007. "Understanding attitudes towards public transport and private car: A qualitative study," Transport Policy, Elsevier, vol. 14(6), pages 478-489, November.
    7. Chowdhury, Subeh & Hadas, Yuval & Gonzalez, Vicente A. & Schot, Bart, 2018. "Public transport users' and policy makers' perceptions of integrated public transport systems," Transport Policy, Elsevier, vol. 61(C), pages 75-83.
    8. Bergström, A. & Magnusson, R., 2003. "Potential of transferring car trips to bicycle during winter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 649-666, October.
    9. Handy, Susan & Weston, Lisa & Mokhtarian, Patricia L., 2005. "Driving by choice or necessity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 183-203.
    10. Alistair Kerr & Alexia Lennon & Barry Watson, 2010. "The call of the road: factors predicting students’ car travelling intentions and behaviour," Transportation, Springer, vol. 37(1), pages 1-13, January.
    11. Rybarczyk, Greg & Gallagher, Laura, 2014. "Measuring the potential for bicycling and walking at a metropolitan commuter university," Journal of Transport Geography, Elsevier, vol. 39(C), pages 1-10.
    12. Delmelle, Eric M. & Delmelle, Elizabeth Cahill, 2012. "Exploring spatio-temporal commuting patterns in a university environment," Transport Policy, Elsevier, vol. 21(C), pages 1-9.
    13. Zhou, Jiangping, 2012. "Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1013-1029.
    14. Brenda I. Bustillos & Jeffrey Shelton & Yi-Chang Chiu, 2011. "Urban university campus transportation and parking planning through a dynamic traffic simulation and assignment approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(2), pages 177-197, January.
    15. Zhang, Rui & Yao, Enjian & Liu, Zhili, 2017. "School travel mode choice in Beijing, China," Journal of Transport Geography, Elsevier, vol. 62(C), pages 98-110.
    16. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    17. Meyer, Michael D., 1999. "Demand management as an element of transportation policy: using carrots and sticks to influence travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 575-599.
    18. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    19. Zhou, Jiangping, 2014. "From better understandings to proactive actions: Housing location and commuting mode choices among university students," Transport Policy, Elsevier, vol. 33(C), pages 166-175.
    20. Jiangping Zhou & Yin Wang & Jiangyue Wu, 2018. "Mode Choice of Commuter Students in a College Town: An Exploratory Study from the United States," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    21. Shannon, Tya & Giles-Corti, Billie & Pikora, Terri & Bulsara, Max & Shilton, Trevor & Bull, Fiona, 2006. "Active commuting in a university setting: Assessing commuting habits and potential for modal change," Transport Policy, Elsevier, vol. 13(3), pages 240-253, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schaefer, Kerstin J. & Tuitjer, Leonie & Levin-Keitel, Meike, 2021. "Transport disrupted – Substituting public transport by bike or car under Covid 19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 202-217.
    2. Maljaee, Seyedeh Sara & Khadem Sameni, Melody, 2022. "Investigating factors affecting university students' use of subway before and after COVID-19 outbreak: A case study in Tehran," Journal of Transport Geography, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    2. Hasnine, Md Sami & Lin, TianYang & Weiss, Adam & Habib, Khandker Nurul, 2018. "Determinants of travel mode choices of post-secondary students in a large metropolitan area: The case of the city of Toronto," Journal of Transport Geography, Elsevier, vol. 70(C), pages 161-171.
    3. Cadima, Catarina & Silva, Cecília & Pinho, Paulo, 2020. "Changing student mobility behaviour under financial crisis: Lessons from a case study in the Oporto University," Journal of Transport Geography, Elsevier, vol. 87(C).
    4. Rybarczyk, Greg & Gallagher, Laura, 2014. "Measuring the potential for bicycling and walking at a metropolitan commuter university," Journal of Transport Geography, Elsevier, vol. 39(C), pages 1-10.
    5. Rotaris, Lucia & Danielis, Romeo, 2015. "Commuting to college: The effectiveness and social efficiency of transportation demand management policies," Transport Policy, Elsevier, vol. 44(C), pages 158-168.
    6. Khaled Assi & Uneb Gazder & Ibrahim Al-Sghan & Imran Reza & Abdullah Almubarak, 2020. "A Nested Ensemble Approach with ANNs to Investigate the Effect of Socioeconomic Attributes on Active Commuting of University Students," IJERPH, MDPI, vol. 17(10), pages 1-17, May.
    7. Pérez-Neira, David & Rodríguez-Fernández, Ma Pilar & Hidalgo-González, Cristina, 2020. "The greenhouse gas mitigation potential of university commuting: A case study of the University of León (Spain)," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Sottile, Eleonora & Tuveri, Giovanni & Piras, Francesco & Meloni, Italo, 2022. "Modelling commuting tours versus non-commuting tours for university students. A panel data analysis from different contexts," Transport Policy, Elsevier, vol. 118(C), pages 56-67.
    9. Jiangping Zhou & Yin Wang & Jiangyue Wu, 2018. "Mode Choice of Commuter Students in a College Town: An Exploratory Study from the United States," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    10. Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
    11. Minh Hieu Nguyen & Dorina Pojani, 2023. "Why are Hanoi students giving up on bus ridership?," Transportation, Springer, vol. 50(3), pages 811-835, June.
    12. Lavery, T.A. & Páez, A. & Kanaroglou, P.S., 2013. "Driving out of choices: An investigation of transport modality in a university sample," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 37-46.
    13. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    14. Collins, Patricia A. & MacFarlane, Robert, 2018. "Evaluating the determinants of switching to public transit in an automobile-oriented mid-sized Canadian city: A longitudinal analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 682-695.
    15. Zhan, Guangjun & Yan, Xuedong & Zhu, Shanjiang & Wang, Yun, 2016. "Using hierarchical tree-based regression model to examine university student travel frequency and mode choice patterns in China," Transport Policy, Elsevier, vol. 45(C), pages 55-65.
    16. Bagdatli, Muhammed Emin Cihangir & Ipek, Fatima, 2022. "Transport mode preferences of university students in post-COVID-19 pandemic," Transport Policy, Elsevier, vol. 118(C), pages 20-32.
    17. Aleksandra Romanowska & Romanika Okraszewska & Kazimierz Jamroz, 2019. "A Study of Transport Behaviour of Academic Communities," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    18. Hidalgo-González, Cristina & Rodríguez-Fernández, M Pilar & Pérez-Neira, David, 2022. "Energy consumption in university commuting: Barriers, policies and reduction scenarios in León (Spain)," Transport Policy, Elsevier, vol. 116(C), pages 48-57.
    19. Branka Trček & Beno Mesarec, 2022. "Pathways to Alternative Transport Mode Choices among University Students and Staff—Commuting to the University of Maribor since 2010," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    20. Cass, Noel & Faulconbridge, James, 2016. "Commuting practices: New insights into modal shift from theories of social practice," Transport Policy, Elsevier, vol. 45(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:87:y:2020:i:c:s0966692319302285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.