IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v103y2022ics0966692322001284.html
   My bibliography  Save this article

A GIS-based, microscale walkability assessment integrating the local topography

Author

Listed:
  • Rahman, Ashikur

Abstract

This research sets an example of how large-scale walkability indices can be transformed into microscale walkability indices through a systematic evaluation of the different local components of the built environment. A Geographic Information System (GIS)-based qualitative scoring system of 15 micro-variables is developed to assess the walkability performances of the urban streets. Furthermore, the proposed microscale walkability index has been validated against real-world pedestrian surveys. The study also devises a method of quantifying the topographic variation within the catchments of urban streets and eventually, estimating its adverse impact on walkability. The City of Sydney area of Sydney, Australia is selected as the case study for its varying topography and availability of relevant data. The research is the first of its kind for incorporating the distinctive topography of Australian urban areas in the analysis of microscale walkability.

Suggested Citation

  • Rahman, Ashikur, 2022. "A GIS-based, microscale walkability assessment integrating the local topography," Journal of Transport Geography, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:jotrge:v:103:y:2022:i:c:s0966692322001284
    DOI: 10.1016/j.jtrangeo.2022.103405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692322001284
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2022.103405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Delso, Javier & Martín, Belén & Ortega, Emilio, 2018. "A new procedure using network analysis and kernel density estimations to evaluate the effect of urban configurations on pedestrian mobility. The case study of Vitoria –Gasteiz," Journal of Transport Geography, Elsevier, vol. 67(C), pages 61-72.
    3. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    4. Tarek Al Shammas & Francisco Escobar, 2019. "Comfort and Time-Based Walkability Index Design: A GIS-Based Proposal," IJERPH, MDPI, vol. 16(16), pages 1-22, August.
    5. D'Orso, Gabriele & Migliore, Marco, 2020. "A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments," Journal of Transport Geography, Elsevier, vol. 82(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartzokas-Tsiompras, Alexandros & Bakogiannis, Efthimios & Nikitas, Alexandros, 2023. "Global microscale walkability ratings and rankings: A novel composite indicator for 59 European city centres," Journal of Transport Geography, Elsevier, vol. 111(C).
    2. Gen Hayauchi & Ryo Ariyoshi & Takayuki Morikawa & Fumihiko Nakamura, 2023. "Assessment of the Improvement of Public Transport in Hillside Cities Considering the Impact of Topography on Walking Choices," Sustainability, MDPI, vol. 15(12), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otsuka, Noriko & Wittowsky, Dirk & Damerau, Marlene & Gerten, Christian, 2021. "Walkability assessment for urban areas around railway stations along the Rhine-Alpine Corridor," Journal of Transport Geography, Elsevier, vol. 93(C).
    2. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    3. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    4. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    5. Gao, Jie & Kamphuis, Carlijn B.M. & Helbich, Marco & Ettema, Dick, 2020. "What is ‘neighborhood walkability’? How the built environment differently correlates with walking for different purposes and with walking on weekdays and weekends," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Tilahun, Nebiyou & Thakuriah, Piyushimita (Vonu) & Li, Moyin & Keita, Yaye, 2016. "Transit use and the work commute: Analyzing the role of last mile issues," Journal of Transport Geography, Elsevier, vol. 54(C), pages 359-368.
    7. Yang, Hongtai & Huo, Jinghai & Bao, Yongxing & Li, Xuan & Yang, Linchuan & Cherry, Christopher R., 2021. "Impact of e-scooter sharing on bike sharing in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 23-36.
    8. Todor Stojanovski, 2019. "Urban Form and Mobility Choices: Informing about Sustainable Travel Alternatives, Carbon Emissions and Energy Use from Transportation in Swedish Neighbourhoods," Sustainability, MDPI, vol. 11(2), pages 1-28, January.
    9. Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
    10. Fernando Fonseca & George Papageorgiou & Simona Tondelli & Paulo Ribeiro & Elisa Conticelli & Mona Jabbari & Rui Ramos, 2022. "Perceived Walkability and Respective Urban Determinants: Insights from Bologna and Porto," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    11. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    12. Fernando Fonseca & Elisa Conticelli & George Papageorgiou & Paulo Ribeiro & Mona Jabbari & Simona Tondelli & Rui Ramos, 2021. "Levels and Characteristics of Utilitarian Walking in the Central Areas of the Cities of Bologna and Porto," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    13. David S Vale & Mauro Pereira, 2017. "The influence of the impedance function on gravity-based pedestrian accessibility measures: A comparative analysis," Environment and Planning B, , vol. 44(4), pages 740-763, July.
    14. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    15. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    16. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    17. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    18. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    19. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    20. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:103:y:2022:i:c:s0966692322001284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.