IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v66y2017ipap48-57.html
   My bibliography  Save this article

Reverse cross-docking

Author

Listed:
  • Soto Zuluaga, Juan Pablo
  • Thiell, Marcus
  • Colomé Perales, Rosa

Abstract

Companies continuously look for new ways to optimize their processes according to their competitive priorities. Returns process management, as a part of reverse logistics, has become an important field of performance improvement, especially in businesses with seasonal demand patterns, like fashion, books, or electronics. Consequently, unsold articles are often commercialized through secondary channels, such as outlet stores. To approach the management of reverse logistics systems, models used to optimize the forward flow of articles have been analyzed and adjusted to cope with the characteristics of reverse flows. Despite the recognized impact of cross-docking in forward logistics, approaches to apply this strategy in the returns context are lacking. This paper demonstrates how cross-docking can be implemented in a reverse logistics context and it proposes a corresponding linear programming model. Results show that the application of “reverse cross-docking” can increase the efficiency of reverse logistics in terms of cost reductions, time savings, and improvement of information management in returns processes. Sensitivity analyses show that a reverse cross-docking system can help companies to improve competitiveness in situations where (a) the outlet flexibility related to products and quantities received is high, (b) the probability of returns from secondary markets is low, or (c) the combination of return and cross-docking costs in comparison with warehousing costs are low. The reverse cross-docking model in its basic form covers the main system characteristics and is flexible for further extensions. An extension presented herein refers to the consideration of heterogeneous article prices, indicating the usefulness of reverse cross-docking, particularly in industries with low price levels.

Suggested Citation

  • Soto Zuluaga, Juan Pablo & Thiell, Marcus & Colomé Perales, Rosa, 2017. "Reverse cross-docking," Omega, Elsevier, vol. 66(PA), pages 48-57.
  • Handle: RePEc:eee:jomega:v:66:y:2017:i:pa:p:48-57
    DOI: 10.1016/j.omega.2016.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316000116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz-Benítez, Rocío & Ketzenberg, Michael & van der Laan, Erwin A., 2014. "Managing consumer returns in high clockspeed industries," Omega, Elsevier, vol. 43(C), pages 54-63.
    2. Kumar, Sameer & Putnam, Valora, 2008. "Cradle to cradle: Reverse logistics strategies and opportunities across three industry sectors," International Journal of Production Economics, Elsevier, vol. 115(2), pages 305-315, October.
    3. Van Belle, Jan & Valckenaers, Paul & Cattrysse, Dirk, 2012. "Cross-docking: State of the art," Omega, Elsevier, vol. 40(6), pages 827-846.
    4. Huang, Shui-Mu & Su, Jack C.P., 2013. "Impact of product proliferation on the reverse supply chain," Omega, Elsevier, vol. 41(3), pages 626-639.
    5. Boysen, Nils & Fliedner, Malte, 2010. "Cross dock scheduling: Classification, literature review and research agenda," Omega, Elsevier, vol. 38(6), pages 413-422, December.
    6. Shad Dowlatshahi, 2000. "Developing a Theory of Reverse Logistics," Interfaces, INFORMS, vol. 30(3), pages 143-155, June.
    7. de Brito, M.P. & Dekker, R., 2003. "A Framework for Reverse Logistics," ERIM Report Series Research in Management ERS-2003-045-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    9. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    10. Bin Shen & Qingying Li, 2015. "Impacts of Returning Unsold Products in Retail Outsourcing Fashion Supply Chain: A Sustainability Analysis," Sustainability, MDPI, vol. 7(2), pages 1-14, January.
    11. Yan, Hong & Tang, Shao-long, 2009. "Pre-distribution and post-distribution cross-docking operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 843-859, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Chi Kin & Man, Nora & Fang, Fei & Campbell, J.F., 2020. "Supply chain coordination with reverse logistics: A vendor/recycler-buyer synchronized cycles model," Omega, Elsevier, vol. 95(C).
    2. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    3. Peter Bodnar & René de Koster & Kaveh Azadeh, 2017. "Scheduling Trucks in a Cross-Dock with Mixed Service Mode Dock Doors," Transportation Science, INFORMS, vol. 51(1), pages 112-131, February.
    4. Michael Krapp & Johannes B. Kraus, 2019. "Coordination contracts for reverse supply chains: a state-of-the-art review," Journal of Business Economics, Springer, vol. 89(7), pages 747-792, September.
    5. Vincent F. Yu & Parida Jewpanya & Voratas Kachitvichyanukul, 2016. "Particle swarm optimization for the multi-period cross-docking distribution problem with time windows," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 509-525, January.
    6. Sgarbossa, Fabio & Russo, Ivan, 2017. "A proactive model in sustainable food supply chain: Insight from a case study," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 596-606.
    7. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    8. Vahab Vahdat & Mohammad Ali Vahdatzad, 2017. "Accelerated Benders’ Decomposition for Integrated Forward/Reverse Logistics Network Design under Uncertainty," Logistics, MDPI, vol. 1(2), pages 1-21, December.
    9. Taniya Mukherjee & Isha Sangal & Biswajit Sarkar & Qais Almaamari & Tamer M. Alkadash, 2023. "How Effective Is Reverse Cross-Docking and Carbon Policies in Controlling Carbon Emission from the Fashion Industry?," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    10. Hans Corsten & Ferdinand Becker & Hagen Salewski, 2020. "Integrating truck and workforce scheduling in a cross-dock: analysis of different workforce coordination policies," Journal of Business Economics, Springer, vol. 90(2), pages 207-237, March.
    11. Buijs, Paul & Vis, Iris F.A. & Carlo, Héctor J., 2014. "Synchronization in cross-docking networks: A research classification and framework," European Journal of Operational Research, Elsevier, vol. 239(3), pages 593-608.
    12. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    13. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    14. Rahman, Shams & Subramanian, Nachiappan, 2012. "Factors for implementing end-of-life computer recycling operations in reverse supply chains," International Journal of Production Economics, Elsevier, vol. 140(1), pages 239-248.
    15. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    16. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2016. "Outsourcing decisions in reverse logistics: Sustainable balanced scorecard and graph theoretic approach," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 41-53.
    17. Kalogerakis, Katharina & Drabe, Viktoria & Paramasivam, Mugundan & Herstatt, Cornelius, 2015. "Closed-Loop Supply Chains for Cradle to Cradle Products," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Sustainability in Logistics and Supply Chain Management: New Designs and Strategies. Proceedings of the Hamburg International Conference of Logistics , volume 21, pages 3-34, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Vanajakumari, Manoj & Sun, Haoying & Jones, Ashley & Sriskandarajah, Chelliah, 2022. "Supply chain planning: A case for Hybrid Cross-Docks," Omega, Elsevier, vol. 108(C).
    19. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    20. Liao, Haolan & Zhang, Qingyu & Li, Lu, 2023. "Optimal procurement strategy for multi-echelon remanufacturing systems under quality uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:66:y:2017:i:pa:p:48-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.