IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v34y2006i4p385-396.html
   My bibliography  Save this article

An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems

Author

Listed:
  • Baykasoglu, Adil
  • Dereli, Turkay
  • Sabuncu, Ibrahim

Abstract

The main characteristic of today's manufacturing environments is volatility. Under a volatile environment, demand is not stable. It changes from one production period to another. To operate efficiently under such environments, the facilities must be adaptive to changing production requirements. From a layout point of view, this situation requires the solution of the dynamic layout problem (DLP). DLP is a computationally complex combinatorial optimization problem for which optimal solutions can only be found for small size problems. It is known that classical optimization procedures are not adequate for this problem. Therefore, several heuristics including taboo search, simulated annealing and genetic algorithm are applied to this problem to find a good solution. This work makes use of the ant colony optimization (ACO) algorithm to solve the DLP by considering the budget constraints. The paper makes the first attempt to show how the ACO can be applied to DLP with the budget constraints. In the paper, example applications are presented and computational experiments are performed to present suitability of the ACO to solve the DLP problems. Promising results are obtained from the solution of several test problems.

Suggested Citation

  • Baykasoglu, Adil & Dereli, Turkay & Sabuncu, Ibrahim, 2006. "An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems," Omega, Elsevier, vol. 34(4), pages 385-396, August.
  • Handle: RePEc:eee:jomega:v:34:y:2006:i:4:p:385-396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(04)00191-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bharat K. Kaku & Joseph B. Mazzola, 1997. "A Tabu-Search Heuristic for the Dynamic Plant Layout Problem," INFORMS Journal on Computing, INFORMS, vol. 9(4), pages 374-384, November.
    2. Balakrishnan, Jaydeep & Jacobs, F. Robert & Venkataramanan, Munirpallam A., 1992. "Solutions for the constrained dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 57(2), pages 280-286, March.
    3. E Erel & J B Ghosh & J T Simon, 2003. "New heuristic for the dynamic layout problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1275-1282, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Hsin Chen, Gary, 2013. "A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems," International Journal of Production Economics, Elsevier, vol. 142(2), pages 362-371.
    2. Balakrishnan, Jaydeep & Hung Cheng, Chun, 2009. "The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty," Omega, Elsevier, vol. 37(1), pages 165-177, February.
    3. Sachuer Bao & Chi Zhang & Min Ouyang & Lixin Miao, 2019. "An integrated tri-level model for enhancing the resilience of facilities against intentional attacks," Annals of Operations Research, Springer, vol. 283(1), pages 87-117, December.
    4. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    5. Wu, Desheng & Olson, David L. & Wang, Shouyang, 2019. "Finance-operations interface mechanism and models," Omega, Elsevier, vol. 88(C), pages 1-3.
    6. Gintaras Palubeckis & Armantas Ostreika & Jūratė Platužienė, 2022. "A Variable Neighborhood Search Approach for the Dynamic Single Row Facility Layout Problem," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    7. Marta S.R. Monteiro & Dalila B.M.M. Fontes & Fernando A.C.C. Fontes, 2012. "Ant Colony Optimization: a literature survey," FEP Working Papers 474, Universidade do Porto, Faculdade de Economia do Porto.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dunker, Thomas & Radons, Gunter & Westkamper, Engelbert, 2005. "Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 55-69, August.
    2. Saif Benjaafar & Sunderesh S. Heragu & Shahrukh A. Irani, 2002. "Next Generation Factory Layouts: Research Challenges and Recent Progress," Interfaces, INFORMS, vol. 32(6), pages 58-76, December.
    3. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.
    4. Kulturel-Konak, Sadan, 2012. "A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays," European Journal of Operational Research, Elsevier, vol. 223(3), pages 614-625.
    5. Akash Tayal & Surya Prakash Singh, 2019. "Formulating multi-objective stochastic dynamic facility layout problem for disaster relief," Annals of Operations Research, Springer, vol. 283(1), pages 837-863, December.
    6. Yang, Taho & Peters, Brett A., 1998. "Flexible machine layout design for dynamic and uncertain production environments," European Journal of Operational Research, Elsevier, vol. 108(1), pages 49-64, July.
    7. E Erel & J B Ghosh & J T Simon, 2003. "New heuristic for the dynamic layout problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1275-1282, December.
    8. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    9. He, N. & Zhang, D.Z. & Li, Q., 2014. "Agent-based hierarchical production planning and scheduling in make-to-order manufacturing system," International Journal of Production Economics, Elsevier, vol. 149(C), pages 117-130.
    10. Balakrishnan, Jaydeep & Cheng, Chun Hung, 1998. "Dynamic layout algorithms: a state-of-the-art survey," Omega, Elsevier, vol. 26(4), pages 507-521, August.
    11. Balakrishnan, Jaydeep & Hung Cheng, Chun, 2009. "The dynamic plant layout problem: Incorporating rolling horizons and forecast uncertainty," Omega, Elsevier, vol. 37(1), pages 165-177, February.
    12. Akash Tayal & Angappa Gunasekaran & Surya Prakash Singh & Rameshwar Dubey & Thanos Papadopoulos, 2017. "Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations," Annals of Operations Research, Springer, vol. 253(1), pages 621-655, June.
    13. McKendall Jr., Alan R. & Hakobyan, Artak, 2010. "Heuristics for the dynamic facility layout problem with unequal-area departments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 171-182, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:34:y:2006:i:4:p:385-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.