IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i10p2339-2355.html
   My bibliography  Save this article

Change point estimators by local polynomial fits under a dependence assumption

Author

Listed:
  • Lin, Zhengyan
  • Li, Degui
  • Chen, Jia

Abstract

We study a random design regression model generated by dependent observations, when the regression function itself (or its [nu]-th derivative) may have a change or discontinuity point. A method based on the local polynomial fits with one-sided kernels to estimate the location and the jump size of the change point is applied in this paper. When the jump location is known, a central limit theorem for the estimator of the jump size is established; when the jump location is unknown, we first obtain a functional limit theorem for a local dilated-rescaled version estimator of the jump size and then give the asymptotic distributions for the estimators of the location and the jump size of the change point. The asymptotic results obtained in this paper can be viewed as extensions of corresponding results for independent observations. Furthermore, a simulated example is given to show that our theory and method perform well in practice.

Suggested Citation

  • Lin, Zhengyan & Li, Degui & Chen, Jia, 2008. "Change point estimators by local polynomial fits under a dependence assumption," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2339-2355, November.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:10:p:2339-2355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00066-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grégoire, Gérard & Hamrouni, Zouhir, 2002. "Change Point Estimation by Local Linear Smoothing," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 56-83, October.
    2. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    3. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujiao Yang & Qiongxia Song, 2014. "Jump detection in time series nonparametric regression models: a polynomial spline approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 325-344, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    2. Zongwu Cai & Guannan Liu & Wei Long & Xuelong Luo, 2024. "Semiparametric Conditional Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202401, University of Kansas, Department of Economics, revised Jan 2024.
    3. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    4. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    5. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    6. Ruiz-Castillo, Javier, 2012. "From the “European Paradox” to a European Drama in citation impact," UC3M Working papers. Economics we1211, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Wolfgang Härdle & Song Song, 2008. "The Stochastic Fluctuation of the Quantile Regression Curve," SFB 649 Discussion Papers SFB649DP2008-027, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    8. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.
    9. Chen, Xirong & Li, Degui & Li, Qi & Li, Zheng, 2019. "Nonparametric estimation of conditional quantile functions in the presence of irrelevant covariates," Journal of Econometrics, Elsevier, vol. 212(2), pages 433-450.
    10. Sun, Haoze & Weng, Chengguo & Zhang, Yi, 2017. "Optimal multivariate quota-share reinsurance: A nonparametric mean-CVaR framework," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 197-214.
    11. Han-Ying Liang & Jacobo Uña-Álvarez, 2011. "Asymptotic properties of conditional quantile estimator for censored dependent observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 267-289, April.
    12. Han-Ying Liang & Jacobo Uña-Álvarez, 2012. "Empirical likelihood for conditional quantile with left-truncated and dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 765-790, August.
    13. Kadiri Nadia & Rabhi Abbes & Bouchentouf Amina Angelika, 2018. "Strong uniform consistency rates of conditional quantile estimation in the single functional index model under random censorship," Dependence Modeling, De Gruyter, vol. 6(1), pages 197-227, November.
    14. Hao Jin & Si Zhang & Jinsuo Zhang, 2017. "Spurious regression due to neglected of non-stationary volatility," Computational Statistics, Springer, vol. 32(3), pages 1065-1081, September.
    15. Guannan Liu & Wei Long & Bingduo Yang & Zongwu Cai, 2022. "Semiparametric estimation and model selection for conditional mixture copula models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 287-330, March.
    16. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2023. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Papers 2303.13218, arXiv.org.
    17. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    18. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    19. Honda, Toshio, 2013. "Nonparametric LAD cointegrating regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 150-162.
    20. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 768-784.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:10:p:2339-2355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.