Advanced Search
MyIDEAS: Login to save this article or follow this journal

Interpreting Kullback-Leibler divergence with the Neyman-Pearson lemma

Contents:

Author Info

  • Eguchi, Shinto
  • Copas, John
Registered author(s):

    Abstract

    Kullback-Leibler divergence and the Neyman-Pearson lemma are two fundamental concepts in statistics. Both are about likelihood ratios: Kullback-Leibler divergence is the expected log-likelihood ratio, and the Neyman-Pearson lemma is about error rates of likelihood ratio tests. Exploring this connection gives another statistical interpretation of the Kullback-Leibler divergence in terms of the loss of power of the likelihood ratio test when the wrong distribution is used for one of the hypotheses. In this interpretation, the standard non-negativity property of the Kullback-Leibler divergence is essentially a restatement of the optimal property of likelihood ratios established by the Neyman-Pearson lemma. The asymmetry of Kullback-Leibler divergence is overviewed in information geometry.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4KBVV4G-2/2/6bb75f8eb320ceda1e361f3395bbc77f
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 9 (October)
    Pages: 2034-2040

    as in new window
    Handle: RePEc:eee:jmvana:v:97:y:2006:i:9:p:2034-2040

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Exponential connection Mixture connection Information geometry Testing hypotheses Maximum likelihood ROC curve;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Springborn, Michael & Sanchirico, James N., 2013. "A density projection approach for non-trivial information dynamics: Adaptive management of stochastic natural resources," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 609-624.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:9:p:2034-2040. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.