IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v185y2021ics0047259x21000440.html
   My bibliography  Save this article

Exact variance formula for the estimated mean outcome with external intervention based on the front-door criterion in Gaussian linear structural equation models

Author

Listed:
  • Nanmo, Hisayoshi
  • Kuroki, Manabu

Abstract

In this paper, we assume that cause–effect relationships among variables can be represented by a Gaussian linear structural equation model and a corresponding directed acyclic graph. For a set of intermediate variables that satisfies the front-door criterion, we provide the variance formula of the estimated mean outcome under an external intervention in which a treatment variable is set to a specified constant value. The variance formula proposed in this paper is exact, in contrast to those in most previous studies on estimating total effects. In addition, based on the variance formula, we formulate the mean squared error between a future sample and the estimated mean outcome with the external intervention.

Suggested Citation

  • Nanmo, Hisayoshi & Kuroki, Manabu, 2021. "Exact variance formula for the estimated mean outcome with external intervention based on the front-door criterion in Gaussian linear structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000440
    DOI: 10.1016/j.jmva.2021.104766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manabu Kuroki & Hisayoshi Nanmo, 2020. "Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 667-685, December.
    2. Manabu Kuroki, 2012. "Optimizing a control plan using a structural equation model with an application to statistical process analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 673-694, August.
    3. Manabu Kuroki & Takahiro Hayashi, 2016. "On the Estimation Accuracy of Causal Effects using Supplementary Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 505-519, June.
    4. Elena Stanghellini & Eduwin Pakpahan, 2015. "Identification of causal effects in linear models: beyond instrumental variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 489-509, September.
    5. Manabu Kuroki & Judea Pearl, 2014. "Measurement bias and effect restoration in causal inference," Biometrika, Biometrika Trust, vol. 101(2), pages 423-437.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manabu Kuroki & Hisayoshi Nanmo, 2020. "Variance formulas for estimated mean response and predicted response with external intervention based on the back-door criterion in linear structural equation models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 667-685, December.
    2. Ryusei Shingaki & Hiroshi Kanda & Manabu Kuroki, 2021. "Selection and integration of generalized instrumental variables for estimating total effects," Statistical Papers, Springer, vol. 62(5), pages 2355-2381, October.
    3. Pearl Judea, 2014. "The Deductive Approach to Causal Inference," Journal of Causal Inference, De Gruyter, vol. 2(2), pages 1-15, September.
    4. Allman Elizabeth S. & Rhodes John A. & Stanghellini Elena & Valtorta Marco, 2015. "Parameter Identifiability of Discrete Bayesian Networks with Hidden Variables," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 189-205, September.
    5. AmirEmad Ghassami & Andrew Ying & Ilya Shpitser & Eric Tchetgen Tchetgen, 2021. "Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference," Papers 2104.02929, arXiv.org, revised Mar 2022.
    6. Manabu Kuroki & Takahiro Hayashi, 2016. "On the Estimation Accuracy of Causal Effects using Supplementary Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 505-519, June.
    7. Manabu Kuroki, 2016. "The Identification of Direct and Indirect Effects in Studies with an Unmeasured Intermediate Variable," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 228-245, March.
    8. Rahul Singh, 2020. "Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments," Papers 2012.10315, arXiv.org, revised Mar 2023.
    9. Breuer, Anita & Asiedu, Edward, 2017. "Can Gender-Targeted Employment Interventions Help Enhance Community Participation? Evidence from Urban Togo," World Development, Elsevier, vol. 96(C), pages 390-407.
    10. Marie-Ann Sengewald & Steffi Pohl, 2019. "Compensation and Amplification of Attenuation Bias in Causal Effect Estimates," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 589-610, June.
    11. Elena Stanghellini & Eduwin Pakpahan, 2015. "Identification of causal effects in linear models: beyond instrumental variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 489-509, September.
    12. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    13. J. R. Lockwood & Daniel F. McCaffrey, 2019. "Impact Evaluation Using Analysis of Covariance With Error-Prone Covariates That Violate Surrogacy," Evaluation Review, , vol. 43(6), pages 335-369, December.
    14. Burkhard Raunig, 2019. "Background Indicators," Econometrics, MDPI, vol. 7(2), pages 1-14, May.
    15. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    16. J. R. Lockwood & D. McCaffrey, 2020. "Using hidden information and performance level boundaries to study student–teacher assignments: implications for estimating teacher causal effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1333-1362, October.
    17. Trang Quynh Nguyen & Elizabeth A. Stuart, 2020. "Propensity Score Analysis With Latent Covariates: Measurement Error Bias Correction Using the Covariate’s Posterior Mean, aka the Inclusive Factor Score," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 598-636, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.