IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v8y2020i1p249-271n9.html
   My bibliography  Save this article

Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness

Author

Listed:
  • Corder Nathan
  • Yang Shu

    (North Carolina State UniversityNorth Carolina, US)

Abstract

The problem of missingness in observational data is ubiquitous. When the confounders are missing at random, multiple imputation is commonly used; however, the method requires congeniality conditions for valid inferences, which may not be satisfied when estimating average causal treatment effects. Alternatively, fractional imputation, proposed by Kim 2011, has been implemented to handling missing values in regression context. In this article, we develop fractional imputation methods for estimating the average treatment effects with confounders missing at random. We show that the fractional imputation estimator of the average treatment effect is asymptotically normal, which permits a consistent variance estimate. Via simulation study, we compare fractional imputation’s accuracy and precision with that of multiple imputation.

Suggested Citation

  • Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
  • Handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:249-271:n:9
    DOI: 10.1515/jci-2019-0024
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2019-0024
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2019-0024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jae Kwang Kim, 2011. "Parametric fractional imputation for missing data analysis," Biometrika, Biometrika Trust, vol. 98(1), pages 119-132.
    2. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    3. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    4. D. Pfeffermann & C. J. Skinner & D. J. Holmes & H. Goldstein & J. Rasbash, 1998. "Weighting for unequal selection probabilities in multilevel models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 23-40.
    5. Manabu Kuroki & Judea Pearl, 2014. "Measurement bias and effect restoration in causal inference," Biometrika, Biometrika Trust, vol. 101(2), pages 423-437.
    6. S Yang & L Wang & P Ding, 2019. "Causal inference with confounders missing not at random," Biometrika, Biometrika Trust, vol. 106(4), pages 875-888.
    7. Jae Kwang Kim & J. Michael Brick & Wayne A. Fuller & Graham Kalton, 2006. "On the bias of the multiple‐imputation variance estimator in survey sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 509-521, June.
    8. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corder Nathan & Yang Shu, 2020. "Estimating Average Treatment Effects Utilizing Fractional Imputation when Confounders are Subject to Missingness," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 249-271, January.
    2. Weiping Zhang & Feiyue Xie & Jiaxin Tan, 2020. "A robust joint modeling approach for longitudinal data with informative dropouts," Computational Statistics, Springer, vol. 35(4), pages 1759-1783, December.
    3. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    4. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    5. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    6. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    7. Alberto Abadie & Anish Agarwal & Raaz Dwivedi & Abhin Shah, 2024. "Doubly Robust Inference in Causal Latent Factor Models," Papers 2402.11652, arXiv.org, revised Apr 2024.
    8. Hao Cheng & Ying Wei, 2018. "A fast imputation algorithm in quantile regression," Computational Statistics, Springer, vol. 33(4), pages 1589-1603, December.
    9. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
    10. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    11. Donna Feir & Kelly Foley & Maggie E. C. Jones, 2021. "The Distributional Impacts of Active Labor Market Programs for Indigenous Populations," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 216-220, May.
    12. Loh, Wen Wei & Ren, Dongning, 2021. "Data-driven Covariate Selection for Confounding Adjustment by Focusing on the Stability of the Effect Estimator," OSF Preprints yve6u, Center for Open Science.
    13. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Oct 2022.
    14. Patricia Dörr & Jan Pablo Burgard, 2019. "Data-driven transformations and survey-weighting for linear mixed models," Research Papers in Economics 2019-16, University of Trier, Department of Economics.
    15. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Mar 2024.
    16. Kevin P. Josey & Elizabeth Juarez‐Colunga & Fan Yang & Debashis Ghosh, 2021. "A framework for covariate balance using Bregman distances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 790-816, September.
    17. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    18. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    19. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    20. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:8:y:2020:i:1:p:249-271:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.