IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v169y2019icp400-422.html
   My bibliography  Save this article

Detection of block-exchangeable structure in large-scale correlation matrices

Author

Listed:
  • Perreault, Samuel
  • Duchesne, Thierry
  • Nešlehová, Johanna G.

Abstract

Correlation matrices are omnipresent in multivariate data analysis. When the number d of variables is large, the sample estimates of correlation matrices are typically noisy and conceal underlying dependence patterns. We consider the case when the variables can be grouped into K clusters with exchangeable dependence; this assumption is often made in applications, e.g., in finance and econometrics. Under this partial exchangeability condition, the corresponding correlation matrix has a block structure and the number of unknown parameters is reduced from d(d−1)∕2 to at most K(K+1)∕2. We propose a robust algorithm based on Kendall’s rank correlation to identify the clusters without assuming the knowledge of K a priori or anything about the margins except continuity. The corresponding block-structured estimator performs considerably better than the sample Kendall rank correlation matrix when K

Suggested Citation

  • Perreault, Samuel & Duchesne, Thierry & Nešlehová, Johanna G., 2019. "Detection of block-exchangeable structure in large-scale correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 400-422.
  • Handle: RePEc:eee:jmvana:v:169:y:2019:i:c:p:400-422
    DOI: 10.1016/j.jmva.2018.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18303713
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Severini,Thomas A., 2005. "Elements of Distribution Theory," Cambridge Books, Cambridge University Press, number 9780521844727.
    3. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    4. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    5. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    6. Olivier Ledoit & Michael Wolf, 2003. "Honey, I shrunk the sample covariance matrix," Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    8. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    9. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    10. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    11. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    12. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    13. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    14. Elton, Edwin J & Gruber, Martin J, 1973. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Journal of Finance, American Finance Association, vol. 28(5), pages 1203-1232, December.
    15. Borkowf, Craig B., 2002. "Computing the nonnull asymptotic variance and the asymptotic relative efficiency of Spearman's rank correlation," Computational Statistics & Data Analysis, Elsevier, vol. 39(3), pages 271-286, May.
    16. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    17. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hüttner, Amelie & Scherer, Matthias & Gräler, Benedikt, 2020. "Geostatistical modeling of dependent credit spreads: Estimation of large covariance matrices and imputation of missing data," Journal of Banking & Finance, Elsevier, vol. 118(C).
    2. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    3. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    4. Rutger van der Spek & Alexis Derumigny, 2022. "Fast estimation of Kendall's Tau and conditional Kendall's Tau matrices under structural assumptions," Papers 2204.03285, arXiv.org.
    5. Gong, Tingnan & Zhang, Weiping & Chen, Yu, 2023. "Uncovering block structures in large rectangular matrices," Journal of Multivariate Analysis, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    2. Zheng Wei & Seongyong Kim & Boseung Choi & Daeyoung Kim, 2019. "Multivariate Skew Normal Copula for Asymmetric Dependence: Estimation and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 365-387, January.
    3. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    4. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    5. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    6. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    7. Barry K. Goodwin & Matthew T. Holt & Gülcan Önel & Jeffrey P. Prestemon, 2018. "Copula-based nonlinear modeling of the law of one price for lumber products," Empirical Economics, Springer, vol. 54(3), pages 1237-1265, May.
    8. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    9. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    10. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
    11. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    12. Minoru Tachibana, 2020. "Flight-to-quality in the stock–bond return relation: a regime-switching copula approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(4), pages 429-470, December.
    13. Damette, Olivier & Goutte, Stéphane, 2023. "Beyond climate and conflict relationships: New evidence from a Copula-based analysis on an historical perspective," Journal of Comparative Economics, Elsevier, vol. 51(1), pages 295-323.
    14. Quanrui Song & Jianxu Liu & Songsak Sriboonchitta, 2019. "Risk Measurement of Stock Markets in BRICS, G7, and G20: Vine Copulas versus Factor Copulas," Mathematics, MDPI, vol. 7(3), pages 1-16, March.
    15. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
    16. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    17. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    18. Hua, Lei & Joe, Harry, 2017. "Multivariate dependence modeling based on comonotonic factors," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 317-333.
    19. Ackerer Damien & Vatter Thibault, 2017. "Dependent defaults and losses with factor copula models," Dependence Modeling, De Gruyter, vol. 5(1), pages 375-399, December.
    20. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:169:y:2019:i:c:p:400-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.