IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v150y2016icp214-228.html
   My bibliography  Save this article

Conditioned limit laws for inverted max-stable processes

Author

Listed:
  • Papastathopoulos, Ioannis
  • Tawn, Jonathan A.

Abstract

Max-stable processes are widely used to model spatial extremes. These processes exhibit asymptotic dependence meaning that the large values of the process can occur simultaneously over space. Recently, inverted max-stable processes have been proposed as an important new class for spatial extremes which are in the domain of attraction of a spatially independent max-stable process but instead they cover the broad class of asymptotic independence. To study the extreme values of such processes we use the conditioned approach to multivariate extremes that characterises the limiting distribution of appropriately normalised random vectors given that at least one of their components is large. The current statistical methods for the conditioned approach are based on a canonical parametric family of location and scale norming functions. We study broad classes of inverted max-stable processes containing processes linked to the widely studied max-stable models of Brown–Resnick and extremal-t, and identify conditions for the normalisations to either belong to the canonical family or not. Despite such differences at an asymptotic level, we show that at practical levels, the canonical model can approximate well the true conditional distributions.

Suggested Citation

  • Papastathopoulos, Ioannis & Tawn, Jonathan A., 2016. "Conditioned limit laws for inverted max-stable processes," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 214-228.
  • Handle: RePEc:eee:jmvana:v:150:y:2016:i:c:p:214-228
    DOI: 10.1016/j.jmva.2016.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioannis Papastathopoulos & Jonathan A. Tawn, 2015. "Stochastic ordering under conditional modelling of extreme values: drug-induced liver injury," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 299-317, February.
    2. F. Ballani & M. Schlather, 2011. "A construction principle for multivariate extreme value distributions," Biometrika, Biometrika Trust, vol. 98(3), pages 633-645.
    3. Hilal, Sawsan & Poon, Ser-Huang & Tawn, Jonathan, 2011. "Hedging the black swan: Conditional heteroskedasticity and tail dependence in S&P500 and VIX," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2374-2387, September.
    4. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    5. Opitz, T., 2013. "Extremal t processes: Elliptical domain of attraction and a spectral representation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 409-413.
    6. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    7. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    8. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    9. Marc G. Genton & Yanyuan Ma & Huiyan Sang, 2011. "On the likelihood function of Gaussian max-stable processes," Biometrika, Biometrika Trust, vol. 98(2), pages 481-488.
    10. Sebastian Engelke & Alexander Malinowski & Zakhar Kabluchko & Martin Schlather, 2015. "Estimation of Hüsler–Reiss distributions and Brown–Resnick processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 239-265, January.
    11. Emma F. Eastoe & Jonathan A. Tawn, 2012. "Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds," Biometrika, Biometrika Trust, vol. 99(1), pages 43-55.
    12. Jennifer L. Wadsworth & Jonathan A. Tawn, 2012. "Dependence modelling for spatial extremes," Biometrika, Biometrika Trust, vol. 99(2), pages 253-272.
    13. R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kereszturi, Mónika & Tawn, Jonathan, 2017. "Properties of extremal dependence models built on bivariate max-linearity," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 52-71.
    2. Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    2. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    3. Liu, Y. & Tawn, J.A., 2014. "Self-consistent estimation of conditional multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 19-35.
    4. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    5. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    6. Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    8. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Padoan, Simone A., 2013. "Extreme dependence models based on event magnitude," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 1-19.
    10. Kereszturi, Mónika & Tawn, Jonathan, 2017. "Properties of extremal dependence models built on bivariate max-linearity," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 52-71.
    11. Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    12. Hugo C. Winter & Jonathan A. Tawn, 2016. "Modelling heatwaves in central France: a case-study in extremal dependence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 345-365, April.
    13. Papastathopoulos, Ioannis & Strokorb, Kirstin, 2016. "Conditional independence among max-stable laws," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 9-15.
    14. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    15. A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
    16. R. Shooter & E. Ross & A. Ribal & I. R. Young & P. Jonathan, 2021. "Spatial dependence of extreme seas in the North East Atlantic from satellite altimeter measurements," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    17. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    18. C. J. R. Murphy‐Barltrop & J. L. Wadsworth & E. F. Eastoe, 2023. "New estimation methods for extremal bivariate return curves," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    19. Harald Schellander & Tobias Hell, 2018. "Modeling snow depth extremes in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1367-1389, December.
    20. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:150:y:2016:i:c:p:214-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.