Advanced Search
MyIDEAS: Login

High dimensional data analysis using multivariate generalized spatial quantiles

Contents:

Author Info

  • Mukhopadhyay, Nitai D.
  • Chatterjee, Snigdhansu
Registered author(s):

    Abstract

    High dimensional data routinely arises in image analysis, genetic experiments, network analysis, and various other research areas. Many such datasets do not correspond to well-studied probability distributions, and in several applications the data-cloud prominently displays non-symmetric and non-convex shape features. We propose using spatial quantiles and their generalizations, in particular, the projection quantile, for describing, analyzing and conducting inference with multivariate data. Minimal assumptions are made about the nature and shape characteristics of the underlying probability distribution, and we do not require the sample size to be as high as the data-dimension. We present theoretical properties of the generalized spatial quantiles, and an algorithm to compute them quickly. Our quantiles may be used to obtain multidimensional confidence or credible regions that are not required to conform to a pre-determined shape. We also propose a new notion of multidimensional order statistics, which may be used to obtain multidimensional outliers. Many of the features revealed using a generalized spatial quantile-based analysis would be missed if the data was shoehorned into a well-known probabilistic configuration.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-51N7RNG-1/2/90eeee41e7e15ecc99b36f4c16f25613
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 102 (2011)
    Issue (Month): 4 (April)
    Pages: 768-780

    as in new window
    Handle: RePEc:eee:jmvana:v:102:y:2011:i:4:p:768-780

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Multivariate quantile Spatial quantile Projection quantile Generalized spatial quantile Multidimensional coverage sets Multivariate order statistics Brain imaging High dimensional data visualization;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Biman Chakraborty, 2001. "On Affine Equivariant Multivariate Quantiles," Annals of the Institute of Statistical Mathematics, Springer, vol. 53(2), pages 380-403, June.
    2. Chakraborty, Biman & Chaudhuri, Probal, 1999. "A note on the robustness of multivariate medians," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 269-276, November.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:4:p:768-780. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.