IDEAS home Printed from https://ideas.repec.org/a/eee/intell/v73y2019icp52-62.html
   My bibliography  Save this article

Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?

Author

Listed:
  • Kan, Kees-Jan
  • van der Maas, Han L.J.
  • Levine, Stephen Z.

Abstract

The current study implements psychometric network analysis within the framework of confirmatory (structural equation) modeling. Utility is demonstrated by three applications on independent data sets. The first application uses WAIS data and shows that the same kind of fit statistics can be produced for network models as for traditional confirmatory factor models. This can assist deciding between factor analytical and network theories of intelligence, e.g. g theory versus mutualism theory. The second application uses the ‘Holzinger and Swineford data’ and illustrates how to cross-validate a network. The third application concerns a multigroup analysis on scores on the Brief Test of Adult Cognition by Telephone (BCATC). It exemplifies how to test if network parameters have the same values across groups. Of theoretical interest is that in all applications psychometric network models outperformed previously established (g) factor models. Simulations showed that this was unlikely due to overparameterization. Thus the overall results were more consistent with mutualism theory than with mainstream g theory. The presence of common (e.g. genetic) influences is not excluded, however.

Suggested Citation

  • Kan, Kees-Jan & van der Maas, Han L.J. & Levine, Stephen Z., 2019. "Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?," Intelligence, Elsevier, vol. 73(C), pages 52-62.
  • Handle: RePEc:eee:intell:v:73:y:2019:i:c:p:52-62
    DOI: 10.1016/j.intell.2018.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160289618300114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intell.2018.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    2. Karl Holzinger & Frances Swineford, 1937. "The Bi-factor method," Psychometrika, Springer;The Psychometric Society, vol. 2(1), pages 41-54, March.
    3. John Schmid & John Leiman, 1957. "The development of hierarchical factor solutions," Psychometrika, Springer;The Psychometric Society, vol. 22(1), pages 53-61, March.
    4. Rosseel, Yves, 2012. "lavaan: An R Package for Structural Equation Modeling," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i02).
    5. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    6. Sacha Epskamp & Mijke Rhemtulla & Denny Borsboom, 2017. "Generalized Network Psychometrics: Combining Network and Latent Variable Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 904-927, December.
    7. Golino, Hudson F. & Demetriou, Andreas, 2017. "Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis," Intelligence, Elsevier, vol. 62(C), pages 54-70.
    8. Stanley Sclove, 1987. "Application of model-selection criteria to some problems in multivariate analysis," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 333-343, September.
    9. Steven Boker & Michael Neale & Hermine Maes & Michael Wilde & Michael Spiegel & Timothy Brick & Jeffrey Spies & Ryne Estabrook & Sarah Kenny & Timothy Bates & Paras Mehta & John Fox, 2011. "OpenMx: An Open Source Extended Structural Equation Modeling Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 306-317, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maarten Marsman & Mijke Rhemtulla, 2022. "Guest Editors’ Introduction to The Special Issue “Network Psychometrics in Action”: Methodological Innovations Inspired by Empirical Problems," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 1-11, March.
    2. Caemmerer, Jacqueline M. & Keith, Timothy Z. & Reynolds, Matthew R., 2020. "Beyond individual intelligence tests: Application of Cattell-Horn-Carroll Theory," Intelligence, Elsevier, vol. 79(C).
    3. Rozgonjuk, Dmitri & Schmitz, Florian & Kannen, Christopher & Montag, Christian, 2021. "Cognitive ability and personality: Testing broad to nuanced associations with a smartphone app," Intelligence, Elsevier, vol. 88(C).
    4. Conte, Federica & Costantini, Giulio & Rinaldi, Luca & Gerosa, Tiziano & Girelli, Luisa, 2020. "Intellect is not that expensive: differential association of cultural and socio-economic factors with crystallized intelligence in a sample of Italian adolescents," Intelligence, Elsevier, vol. 81(C).
    5. Savi, Alexander O. & Marsman, Maarten & van der Maas, Han L.J., 2021. "Evolving networks of human intelligence," Intelligence, Elsevier, vol. 88(C).
    6. Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
    7. Wai, Jonathan & Lakin, Joni M. & Kell, Harrison J., 2022. "Specific cognitive aptitudes and gifted samples," Intelligence, Elsevier, vol. 92(C).
    8. Sacha Epskamp & Adela-Maria Isvoranu & Mike W.-L. Cheung, 2022. "Meta-analytic Gaussian Network Aggregation," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 12-46, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rockstuhl, Thomas & Van Dyne, Linn, 2018. "A bi-factor theory of the four-factor model of cultural intelligence: Meta-analysis and theoretical extensions," Organizational Behavior and Human Decision Processes, Elsevier, vol. 148(C), pages 124-144.
    2. Sacha Epskamp, 2020. "Psychometric network models from time-series and panel data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 206-231, March.
    3. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2020. "The ultrametric correlation matrix for modelling hierarchical latent concepts," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(4), pages 837-853, December.
    4. Payton J. Jones & Patrick Mair & Thorsten Simon & Achim Zeileis, 2020. "Network Trees: A Method for Recursively Partitioning Covariance Structures," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 926-945, December.
    5. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    6. Simon Foster & Meichun Mohler-Kuo, 2020. "The proportion of non-depressed subjects in a study sample strongly affects the results of psychometric analyses of depression symptoms," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-13, July.
    7. Elise Barboza, Gia & Valentine, Romello, 2022. "A network analysis of post-traumatic stress among youth aging out of the foster care system," Children and Youth Services Review, Elsevier, vol. 140(C).
    8. Maren Wittek & Fabian Manke-Reimers & Eric Schmitt, 2022. "Development and Psychometric Properties of the Community Implementation Behaviour Questionnaire (CIBQ) in the Context of Supporting Caring Relatives of People with Dementia," IJERPH, MDPI, vol. 19(23), pages 1-15, December.
    9. Hudson Golino & Alexander P. Christensen & Robert Moulder & Seohyun Kim & Steven M. Boker, 2022. "Modeling Latent Topics in Social Media using Dynamic Exploratory Graph Analysis: The Case of the Right-wing and Left-wing Trolls in the 2016 US Elections," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 156-187, March.
    10. Jolynn Pek & Hao Wu, 2015. "Profile Likelihood-Based Confidence Intervals and Regions for Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 1123-1145, December.
    11. Robert Jennrich & Peter Bentler, 2012. "Exploratory Bi-factor Analysis: The Oblique Case," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 442-454, July.
    12. Li Cai, 2015. "Lord–Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 535-559, June.
    13. Alexander Robitzsch, 2023. "Modeling Model Misspecification in Structural Equation Models," Stats, MDPI, vol. 6(2), pages 1-17, June.
    14. Elena A. Erosheva & S. McKay Curtis, 2017. "Dealing with Reflection Invariance in Bayesian Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 295-307, June.
    15. Sacha Epskamp & Adela-Maria Isvoranu & Mike W.-L. Cheung, 2022. "Meta-analytic Gaussian Network Aggregation," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 12-46, March.
    16. Rainer W Alexandrowicz & Rebecca Jahn & Johannes Wancata, 2018. "Assessing the dimensionality of the CES-D using multi-dimensional multi-level Rasch models," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    17. Gignac, Gilles E. & Kretzschmar, André, 2017. "Evaluating dimensional distinctness with correlated-factor models: Limitations and suggestions," Intelligence, Elsevier, vol. 62(C), pages 138-147.
    18. Wickelmaier, Florian & Strobl, Carolin & Zeileis, Achim, 2012. "Psychoco: Psychometric Computing in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i01).
    19. Pedro Henrique Ribeiro Santiago & Gustavo Hermes Soares & Lisa Gaye Smithers & Rachel Roberts & Lisa Jamieson, 2022. "Psychological Network of Stress, Coping and Social Support in an Aboriginal Population," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    20. Gaowen Yang & Masahiro Ryo & Julien Roy & Daniel R. Lammel & Max-Bernhard Ballhausen & Xin Jing & Xuefeng Zhu & Matthias C. Rillig, 2022. "Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intell:v:73:y:2019:i:c:p:52-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.