IDEAS home Printed from https://ideas.repec.org/a/eee/intell/v66y2018icp8-23.html
   My bibliography  Save this article

High intelligence: A risk factor for psychological and physiological overexcitabilities

Author

Listed:
  • Karpinski, Ruth I.
  • Kinase Kolb, Audrey M.
  • Tetreault, Nicole A.
  • Borowski, Thomas B.

Abstract

High intelligence is touted as being predictive of positive outcomes including educational success and income level. However, little is known about the difficulties experienced among this population. Specifically, those with a high intellectual capacity (hyper brain) possess overexcitabilities in various domains that may predispose them to certain psychological disorders as well as physiological conditions involving elevated sensory, and altered immune and inflammatory responses (hyper body). The present study surveyed members of American Mensa, Ltd. (n=3715) in order to explore psychoneuroimmunological (PNI) processes among those at or above the 98th percentile of intelligence. Participants were asked to self-report prevalence of both diagnosed and/or suspected mood and anxiety disorders, attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and physiological diseases that include environmental and food allergies, asthma, and autoimmune disease. High statistical significance and a remarkably high relative risk ratio of diagnoses for all examined conditions were confirmed among the Mensa group 2015 data when compared to the national average statistics. This implicates high IQ as being a potential risk factor for affective disorders, ADHD, ASD, and for increased incidence of disease related to immune dysregulation. Preliminary findings strongly support a hyper brain/hyper body association which may have substantial individual and societal implications and warrants further investigation to best identify and serve this at-risk population.

Suggested Citation

  • Karpinski, Ruth I. & Kinase Kolb, Audrey M. & Tetreault, Nicole A. & Borowski, Thomas B., 2018. "High intelligence: A risk factor for psychological and physiological overexcitabilities," Intelligence, Elsevier, vol. 66(C), pages 8-23.
  • Handle: RePEc:eee:intell:v:66:y:2018:i:c:p:8-23
    DOI: 10.1016/j.intell.2017.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160289616303324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intell.2017.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkis K. Mazmanian & June L. Round & Dennis L. Kasper, 2008. "A microbial symbiosis factor prevents intestinal inflammatory disease," Nature, Nature, vol. 453(7195), pages 620-625, May.
    2. Ya-Ping Tang & Eiji Shimizu & Gilles R. Dube & Claire Rampon & Geoffrey A. Kerchner & Min Zhuo & Guosong Liu & Joe Z. Tsien, 1999. "Genetic enhancement of learning and memory in mice," Nature, Nature, vol. 401(6748), pages 63-69, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Anderson, D. & Diris, Ron & Montizaan, Raymond & Rees, Daniel I., 2023. "The effects of becoming a physician on prescription drug use and mental health treatment," Journal of Health Economics, Elsevier, vol. 91(C).
    2. Simone Balestra & Aurélien Sallin & Stefan C. Wolter, 2023. "High-Ability Influencers? The Heterogeneous Effects of Gifted Classmates," Journal of Human Resources, University of Wisconsin Press, vol. 58(2), pages 633-665.
    3. Bruton, Oliver J., 2021. "Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von Economo neuron," Intelligence, Elsevier, vol. 86(C).
    4. Aniel Jessica Leticia Brambila-Tapia & Aris Judit Miranda-Lavastida & Nancy Araceli Vázquez-Sánchez & Nancy Lizbeth Franco-López & Martha Catalina Pérez-González & Gonzalo Nava-Bustos & Francisco José, 2022. "Association of Health and Psychological Factors with Academic Achievement and Non-Verbal Intelligence in University Students with Low Academic Performance: The Influence of Sex," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Cornoldi, Cesare & Giofrè, David & Toffalini, Enrico, 2023. "Cognitive characteristics of intellectually gifted children with a diagnosis of ADHD," Intelligence, Elsevier, vol. 97(C).
    6. Lange-Küttner, Christiane & Averbeck, Bruno B. & Hentschel, Maren & Baumbach, Jan, 2021. "Intelligence matters for stochastic feedback processing during sequence learning in adolescents and young adults," Intelligence, Elsevier, vol. 86(C).
    7. Guez, Ava & Peyre, Hugo & Le Cam, Marion & Gauvrit, Nicolas & Ramus, Franck, 2018. "Are high-IQ students more at risk of school failure?," Intelligence, Elsevier, vol. 71(C), pages 32-40.
    8. Shevchenko, Victoria & Labouret, Ghislaine & Guez, Ava & Côté, Sylvana & Heude, Barbara & Peyre, Hugo & Ramus, Franck, 2023. "Relations between intelligence index score discrepancies and psychopathology symptoms in the EDEN mother-child birth cohort," Intelligence, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    2. Natalia Di Tommaso & Antonio Gasbarrini & Francesca Romana Ponziani, 2021. "Intestinal Barrier in Human Health and Disease," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    3. Mariana F. Fernández & Iris Reina-Pérez & Juan Manuel Astorga & Andrea Rodríguez-Carrillo & Julio Plaza-Díaz & Luis Fontana, 2018. "Breast Cancer and Its Relationship with the Microbiota," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    4. Wei Zhou & Wen-hui Wu & Zi-lin Si & Hui-ling Liu & Hanyu Wang & Hong Jiang & Ya-fang Liu & Raphael N. Alolga & Cheng Chen & Shi-jia Liu & Xue-yan Bian & Jin-jun Shan & Jing Li & Ning-hua Tan & Zhi-hao, 2022. "The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. David M Santucci & Sridhar Raghavachari, 2008. "The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-16, October.
    6. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 1-5, May.
    7. Yiu Chung Tse & Rosemary C Bagot & Juliana A Hutter & Alice S Wong & Tak Pan Wong, 2011. "Modulation of Synaptic Plasticity by Stress Hormone Associates with Plastic Alteration of Synaptic NMDA Receptor in the Adult Hippocampus," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-14, November.
    8. Eman M Fouda, 2017. "Airway Microbiota and Allergic Diseases: Clinical Implications," International Journal of Pulmonary & Respiratory Sciences, Juniper Publishers Inc., vol. 1(5), pages 119-124, May.
    9. Zhigang Li & Katherine Lee & Margaret R. Karagas & Juliette C. Madan & Anne G. Hoen & A. James O’Malley & Hongzhe Li, 2018. "Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 587-608, December.
    10. Mégane Missaire & Nicolas Fraize & Mickaël Antoine Joseph & Al Mahdy Hamieh & Régis Parmentier & Aline Marighetto & Paul Antoine Salin & Gaël Malleret, 2017. "Long-term effects of interference on short-term memory performance in the rat," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intell:v:66:y:2018:i:c:p:8-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.