IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v16y2022i2s1751157722000177.html
   My bibliography  Save this article

Integrative model for discovering linked topics in science and technology

Author

Listed:
  • Xu, Haiyun
  • Yue, Zenghui
  • Pang, Hongshen
  • Elahi, Ehsan
  • Li, Jing
  • Wang, Lu

Abstract

Linked topics in science and technology (LTSTs) can provide new avenues for technological innovation and are a key step in the transition from basic to applied research. This paper proposes a science and technology semantic linkage integration model for discovering LTSTs. Particularly, the integrative model fuses the term co-occurrence networks of basic and applied research, which expands the completeness of topic networks by enhancing the semantic characteristics of these networks. It is found that link prediction can further reinforce the semantic association of topic terms in networks between basic and applied topics. Simple fusion explicitly linked the topic terms, which can be used as automatic seed marking for subsequent link prediction to identify implicit linking of topic terms. Furthermore, an application to the gene-engineered vaccines field depicted that newly predicted implicit relations can effectively identify LTSTs. The results also show that implicit semantic recognition of LTSTs can be enhanced through simple fusion, while the recognition of LTST can be improved through link prediction. Therefore, the proposed model can assist experts to identify LTSTs that cannot be recognized through simple fusion.

Suggested Citation

  • Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
  • Handle: RePEc:eee:infome:v:16:y:2022:i:2:s1751157722000177
    DOI: 10.1016/j.joi.2022.101265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157722000177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2022.101265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabry, Bernd & Ernst, Holger & Langholz, Jens & Köster, Martin, 2006. "Patent portfolio analysis as a useful tool for identifying R&D and business opportunities--an empirical application in the nutrition and health industry," World Patent Information, Elsevier, vol. 28(3), pages 215-225, September.
    2. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    3. Brachtendorf, Lorenz & Gaessler, Fabian & Harhoff, Dietmar, 2020. "Truly Standard-Essential Patents? A Semantics-Based Analysis," Rationality and Competition Discussion Paper Series 265, CRC TRR 190 Rationality and Competition.
    4. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. David Baltimore & Robert Conn & William H Press & Thomas Rosenbaum & David N Spergel & Shirley M Tilghman & Harold Varmus, 2021. "Should the Endless Frontier of Federal Science be Expanded?," Papers 2103.09614, arXiv.org.
    6. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    7. Seokbeom Kwon & Alan Porter & Jan Youtie, 2016. "Navigating the innovation trajectories of technology by combining specialization score analyses for publications and patents: graphene and nano-enabled drug delivery," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1057-1071, March.
    8. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    9. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    10. Arnold Verbeek & Koenraad Debackere & Marc Luwel & Petra Andries & Edwin Zimmermann & Filip Deleus, 2002. "Linking science to technology: Using bibliographic references in patents to build linkage schemes," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(3), pages 399-420, July.
    11. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    12. Rui Li & Tamy Chambers & Ying Ding & Guo Zhang & Liansheng Meng, 2014. "Patent citation analysis: Calculating science linkage based on citing motivation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 1007-1017, May.
    13. Liang Chen & Shuo Xu & Lijun Zhu & Jing Zhang & Xiaoping Lei & Guancan Yang, 2020. "A deep learning based method for extracting semantic information from patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 289-312, October.
    14. Fernanda Morillo & María Bordons & Isabel Gómez, 2001. "An approach to interdisciplinarity through bibliometric indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 203-222, April.
    15. Boyack, Kevin W. & Klavans, Richard, 2008. "Measuring science–technology interaction using rare inventor–author names," Journal of Informetrics, Elsevier, vol. 2(3), pages 173-182.
    16. Lissoni, Francesco, 2010. "Academic inventors as brokers," Research Policy, Elsevier, vol. 39(7), pages 843-857, September.
    17. Thomas W. Steele & Jeffrey C. Stier, 2000. "The impact of interdisciplinary research in the environmental sciences: a forestry case study," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(5), pages 476-484.
    18. Jacques Michel & Bernd Bettels, 2001. "Patent citation analysis.A closer look at the basic input data from patent search reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 185-201, April.
    19. Furukawa, Ryuzo & Goto, Akira, 2006. "The role of corporate scientists in innovation," Research Policy, Elsevier, vol. 35(1), pages 24-36, February.
    20. McCalman, Phillip, 2001. "Reaping what you sow: an empirical analysis of international patent harmonization," Journal of International Economics, Elsevier, vol. 55(1), pages 161-186, October.
    21. Robert J. W. Tijssen & Jos Winnink, 2016. "Twenty-first century macro-trends in the institutional fabric of science: bibliometric monitoring and analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2181-2194, December.
    22. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    23. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
    24. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    25. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    26. Hai-Yun Xu & Zeng-Hui Yue & Chao Wang & Kun Dong & Hong-Shen Pang & Zhengbiao Han, 2017. "Multi-source data fusion study in scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 773-792, May.
    27. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    28. Noyons, E. C. M. & van Raan, A. F. J. & Grupp, H. & Schmoch, U., 1994. "Exploring the science and technology interface: inventor-author relations in laser medicine research," Research Policy, Elsevier, vol. 23(4), pages 443-457, July.
    29. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
    30. Adam B. Jaffe & Michael S. Fogarty & Bruce A. Banks, 1998. "Evidence from Patents and Patent Citations on the Impact of NASA and Other Federal Labs on Commercial Innovation," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 183-205, June.
    31. Bruno Cassiman & Patrick Glenisson & Bart Looy, 2007. "Measuring industry-science links through inventor-author relations: A profiling methodology," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 379-391, February.
    32. Tijssen, Robert J. W., 2002. "Science dependence of technologies: evidence from inventions and their inventors," Research Policy, Elsevier, vol. 31(4), pages 509-526, May.
    33. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    34. Jiancheng Guan & Ying He, 2007. "Patent-bibliometric analysis on the Chinese science — technology linkages," Scientometrics, Springer;Akadémiai Kiadó, vol. 72(3), pages 403-425, September.
    35. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    36. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    37. Tijssen, Robert J. W., 2004. "Is the commercialisation of scientific research affecting the production of public knowledge?: Global trends in the output of corporate research articles," Research Policy, Elsevier, vol. 33(5), pages 709-733, July.
    38. Niemann, Helen & Moehrle, Martin G. & Frischkorn, Jonas, 2017. "Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 210-220.
    39. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    40. Zhang, Yi & Porter, Alan L. & Hu, Zhengyin & Guo, Ying & Newman, Nils C., 2014. "“Term clumping” for technical intelligence: A case study on dye-sensitized solar cells," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 26-39.
    41. M. Meyer & K. Debackere & W. Glänzel, 2010. "Can applied science be ‘good science’? Exploring the relationship between patent citations and citation impact in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(2), pages 527-539, November.
    42. Shuo Xu & Dongsheng Zhai & Feifei Wang & Xin An & Hongshen Pang & Yirong Sun, 2019. "A novel method for topic linkages between scientific publications and patents," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(9), pages 1026-1042, September.
    43. Hu, Xiaojun & Rousseau, Ronald, 2018. "A new approach to explore the knowledge transition path in the evolution of science & technology: From the biology of restriction enzymes to their application in biotechnology," Journal of Informetrics, Elsevier, vol. 12(3), pages 842-857.
    44. Du, Jian & Li, Peixin & Guo, Qianying & Tang, Xiaoli, 2019. "Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis," Journal of Informetrics, Elsevier, vol. 13(1), pages 132-148.
    45. Ji-ping Gao & Kun Ding & Li Teng & Jie Pang, 2012. "Hybrid documents co-citation analysis: making sense of the interaction between science and technology in technology diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 459-471, November.
    46. Huang, Mu-Hsuan & Yang, Hsiao-Wen & Chen, Dar-Zen, 2015. "Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents," Journal of Informetrics, Elsevier, vol. 9(2), pages 237-249.
    47. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    48. Tohalino, Jorge V. & Amancio, Diego R., 2018. "Extractive multi-document summarization using multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 526-539.
    49. Balconi, Margherita & Breschi, Stefano & Lissoni, Francesco, 2004. "Networks of inventors and the role of academia: an exploration of Italian patent data," Research Policy, Elsevier, vol. 33(1), pages 127-145, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dejian Yu & Zhaoping Yan, 2022. "Combining machine learning and main path analysis to identify research front: from the perspective of science-technology linkage," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4251-4274, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    2. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    3. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    4. Gazni, Ali, 2020. "The growing number of patent citations to scientific papers: Changes in the world, nations, and fields," Technology in Society, Elsevier, vol. 62(C).
    5. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    6. Boyack, Kevin W. & Klavans, Richard, 2008. "Measuring science–technology interaction using rare inventor–author names," Journal of Informetrics, Elsevier, vol. 2(3), pages 173-182.
    7. Mariia Shkolnykova, 2021. "Who shapes plant biotechnology in Germany? Joint analysis of the evolution of co-authors’ and co-inventors’ networks," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 27-54, April.
    8. Dejian Yu & Zhaoping Yan, 2022. "Combining machine learning and main path analysis to identify research front: from the perspective of science-technology linkage," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4251-4274, July.
    9. Shuo Xu & Ling Li & Xin An & Liyuan Hao & Guancan Yang, 2021. "An approach for detecting the commonality and specialty between scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7445-7475, September.
    10. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    11. Bar-Ilan, Judit, 2008. "Informetrics at the beginning of the 21st century—A review," Journal of Informetrics, Elsevier, vol. 2(1), pages 1-52.
    12. Kang, Inje & Yang, Jiseong & Lee, Wonjae & Seo, Eun-Yeong & Lee, Duk Hee, 2023. "Delineating development trends of nanotechnology in the semiconductor industry: Focusing on the relationship between science and technology by employing structural topic model," Technology in Society, Elsevier, vol. 74(C).
    13. Xia Gao & Jiancheng Guan, 2009. "Networks of scientific journals: An exploration of Chinese patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(1), pages 283-302, July.
    14. Czarnitzki, Dirk & Glänzel, Wolfgang & Hussinger, Katrin, 2009. "Heterogeneity of patenting activity and its implications for scientific research," Research Policy, Elsevier, vol. 38(1), pages 26-34, February.
    15. Yashuang Qi & Na Zhu & Yujia Zhai & Ying Ding, 2018. "The mutually beneficial relationship of patents and scientific literature: topic evolution in nanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 893-911, May.
    16. Popp, David, 2017. "From science to technology: The value of knowledge from different energy research institutions," Research Policy, Elsevier, vol. 46(9), pages 1580-1594.
    17. Meyer, Martin, 2006. "Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology," Research Policy, Elsevier, vol. 35(10), pages 1646-1662, December.
    18. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    19. Xian Li & Dangzhi Zhao & Xiaojun Hu, 2020. "Gatekeepers in knowledge transfer between science and technology: an exploratory study in the area of gene editing," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1261-1277, August.
    20. Stéphane Maraut & Catalina Martínez, 2014. "Identifying author–inventors from Spain: methods and a first insight into results," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 445-476, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:16:y:2022:i:2:s1751157722000177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.