IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p95-105.html
   My bibliography  Save this article

Efficiency improvement and CO2 emission reduction potentials in the United States petroleum refining industry

Author

Listed:
  • Morrow, William R.
  • Marano, John
  • Hasanbeigi, Ali
  • Masanet, Eric
  • Sathaye, Jayant

Abstract

The U.S. EPA is in the final stages of promulgating regulations to reduce CO2 emissions from the electricity generating industry. A major component of EPA's regulatory strategy targets improvements to power plant operating efficiencies. As the EPA expands regulatory requirements to other industries, including petroleum refining, it is likely that plant efficiency improvements will be critical to achieving CO2 emission reductions. This paper identifies efficiency improvement measures applicable to refining, and quantifies potential cost of conserved energy for these measures. Analysis is at the U.S. petroleum refining sector national-level employing an aggregated notional refinery model (NRM), with the aim of estimating the efficacy of efficiency improvements for reducing emissions. Using this method, roughly 1500 petajoules per year (PJ/yr) of plant fuel savings and 650 gigawatt-hour per year (GWh/yr) of electricity savings (representing 54% and 2% of U.S. refining industry consumption, respectively) are potentially cost-effective. This equates to a potential 85 Mt–CO2/yr reduction. An additional 458 PJ/yr fuel reduction and close to 2750 GWh/yr of electricity reduction (27 Mt–CO2/yr) are not cost-effective at prevailing natural gas market prices. Results are presented as a supply-curve ordering measures from low to high cost of fuel savings versus cumulative energy reduction.

Suggested Citation

  • Morrow, William R. & Marano, John & Hasanbeigi, Ali & Masanet, Eric & Sathaye, Jayant, 2015. "Efficiency improvement and CO2 emission reduction potentials in the United States petroleum refining industry," Energy, Elsevier, vol. 93(P1), pages 95-105.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:95-105
    DOI: 10.1016/j.energy.2015.08.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahouni, Nassim & Gholami, Majid & Panjeshahi, M. Hassan, 2016. "Integration of flare gas with fuel gas network in refineries," Energy, Elsevier, vol. 111(C), pages 82-91.
    2. Park, Nyun-Bae & Park, Sang Yong & Kim, Jong-Jin & Choi, Dong Gu & Yun, Bo Yeong & Hong, Jong Chul, 2017. "Technical and economic potential of highly efficient boiler technologies in the Korean industrial sector," Energy, Elsevier, vol. 121(C), pages 884-891.
    3. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    4. Hongju Da & Degang Xu & Jufeng Li & Zhihe Tang & Jiaxin Li & Chen Wang & Hui Luan & Fang Zhang & Yong Zeng, 2023. "Influencing Factors of Carbon Emission from Typical Refining Units: Identification, Analysis, and Mitigation Potential," Energies, MDPI, vol. 16(18), pages 1-17, September.
    5. Wang, Ke & Wang, Shanshan & Liu, Lei & Yue, Hui & Zhang, Ruiqin & Tang, Xiaoyan, 2016. "Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China," Applied Energy, Elsevier, vol. 184(C), pages 810-819.
    6. Moradi Nasab, N. & Amin-Naseri, M.R., 2016. "Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain," Energy, Elsevier, vol. 114(C), pages 708-733.
    7. Levihn, Fabian, 2016. "On the problem of optimizing through least cost per unit, when costs are negative: Implications for cost curves and the definition of economic efficiency," Energy, Elsevier, vol. 114(C), pages 1155-1163.

    More about this item

    Keywords

    Energy-efficiency; CO2 emissions; Petroleum refining;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:95-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.