IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1280-1289.html
   My bibliography  Save this article

Oxygen and hydrogen productivities and repeatable reactivity of 30-mol%-Fe-, Co-, Ni-, Mn-doped CeO2−δ for thermochemical two-step water-splitting cycle

Author

Listed:
  • Gokon, Nobuyuki
  • Suda, Toshinori
  • Kodama, Tatsuya

Abstract

The characteristics of oxygen/hydrogen productivity using 30-mol%-M (M = Fe, Co, Ni, Mn)-doped CeO2−δ (30-mol%-M-CeO2−δ) were studied for the thermochemical two-step water splitting cycle comprising TR (thermal reduction) at 1500 °C and WD (water decomposition) at 1150 °C. The reproducibility of oxygen evolution was evaluated using 30-mol%-M-CeO2−δ and the effects of different M dopants were compared in the TR temperature range of 1200–1500 °C. Two solid phases detected in the 30-mol%-M- CeO2−δ powders were involved in the redox reaction of the thermochemical two-step water splitting cycle. Among the M-CeO2−δ samples evaluated, Mn-doped CeO2−δ provided the most stable and reproducible results and the highest reactivity for oxygen evolution at all temperatures employed for the TR step of the thermochemical two-step water-splitting cycle.

Suggested Citation

  • Gokon, Nobuyuki & Suda, Toshinori & Kodama, Tatsuya, 2015. "Oxygen and hydrogen productivities and repeatable reactivity of 30-mol%-Fe-, Co-, Ni-, Mn-doped CeO2−δ for thermochemical two-step water-splitting cycle," Energy, Elsevier, vol. 90(P2), pages 1280-1289.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1280-1289
    DOI: 10.1016/j.energy.2015.06.085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    2. Kaneko, H. & Miura, T. & Ishihara, H. & Taku, S. & Yokoyama, T. & Nakajima, H. & Tamaura, Y., 2007. "Reactive ceramics of CeO2–MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy," Energy, Elsevier, vol. 32(5), pages 656-663.
    3. Rosen, Marc A., 2010. "Advances in hydrogen production by thermochemical water decomposition: A review," Energy, Elsevier, vol. 35(2), pages 1068-1076.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xing & Hong, Jiarong & Zhang, Yaning & Shuai, Yong & Yuan, Yuan & Li, Bingxi & Tan, Heping, 2017. "Exergy distribution characteristics of solar-thermal dissociation of NiFe2O4 in a solar reactor," Energy, Elsevier, vol. 123(C), pages 131-138.
    2. Attia, Yasser & Samer, Mohamed, 2017. "Metal clusters: New era of hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 878-892.
    3. Guene Lougou, Bachirou & Shuai, Yong & Zhang, Hao & Ahouannou, Clément & Zhao, Jiupeng & Kounouhewa, Basile Bruno & Tan, Heping, 2020. "Thermochemical CO2 reduction over NiFe2O4@alumina filled reactor heated by high-flux solar simulator," Energy, Elsevier, vol. 197(C).
    4. Kong, Hui & Kong, Xianghui & Wang, Jian & Zhang, Jun, 2019. "Thermodynamic analysis of a solar thermochemical cycle-based direct coal liquefaction system for oil production," Energy, Elsevier, vol. 179(C), pages 1279-1287.
    5. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    2. Lange, M. & Roeb, M. & Sattler, C. & Pitz-Paal, R., 2014. "T–S diagram efficiency analysis of two-step thermochemical cycles for solar water splitting under various process conditions," Energy, Elsevier, vol. 67(C), pages 298-308.
    3. Sun, Qian & Zou, Meishuai & Guo, Xiaoyan & Yang, Rongjie & Huang, Haitao & Huang, Peng & He, Xiangdong, 2015. "A study of hydrogen generation by reaction of an activated Mg–CoCl2 (magnesium–cobalt chloride) composite with pure water for portable applications," Energy, Elsevier, vol. 79(C), pages 310-314.
    4. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    5. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    6. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    7. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    8. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    9. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    10. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
    11. González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
    12. Hyun-Seok Cho & Tatsuya Kodama & Nobuyuki Gokon & Selvan Bellan & Jong-Kyu Kim, 2021. "Development of Synthesis and Fabrication Process for Mn-CeO 2 Foam via Two-Step Water-Splitting Cycle Hydrogen Production," Energies, MDPI, vol. 14(21), pages 1-14, October.
    13. Margherita Perrero & Davide Papurello, 2023. "Solar Disc Concentrator: Material Selection for the Receiver," Energies, MDPI, vol. 16(19), pages 1-11, September.
    14. Santos, D.M.F. & Šljukić, B. & Sequeira, C.A.C. & Macciò, D. & Saccone, A. & Figueiredo, J.L., 2013. "Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum--dysprosium alloys," Energy, Elsevier, vol. 50(C), pages 486-492.
    15. Liu, Xiangyu & Hong, Hui & Zhang, Hao & Cao, Yali & Qu, Wanjun & Jin, Hongguang, 2020. "Solar methanol by hybridizing natural gas chemical looping reforming with solar heat," Applied Energy, Elsevier, vol. 277(C).
    16. Gutiérrez Ortiz, F.J. & Ollero, P. & Serrera, A. & Galera, S., 2012. "Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water," Energy, Elsevier, vol. 42(1), pages 192-203.
    17. Liu, Yongan & Wang, Xinhua & Liu, Haizhen & Dong, Zhaohui & Cao, Guozhou & Yan, Mi, 2014. "Hydrogen generation from Mg–LiBH4 hydrolysis improved by AlCl3 addition," Energy, Elsevier, vol. 68(C), pages 548-554.
    18. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
    19. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    20. Li, Lin & Song, Yongchen & Jiang, Bo & Wang, Kaiqiang & Zhang, Qian, 2017. "A novel oxygen carrier for chemical looping reforming: LaNiO3 perovskite supported on montmorillonite," Energy, Elsevier, vol. 131(C), pages 58-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1280-1289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.