IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp462-470.html
   My bibliography  Save this article

Mechanistic modeling, numerical simulation and validation of slag-layer growth in a coal-fired boiler

Author

Listed:
  • Balakrishnan, S.
  • Nagarajan, R.
  • Karthick, K.

Abstract

In a tangentially coal-fired boiler, for locations inside and near the combustor, heat-transfer by radiation is significant, and hence, ash particles arrive in molten state. The aim of the present study is to adopt a mechanistic modeling approach which incorporates energy-conservation principles to address slag-layer growth. In order to determine the outcome of molten ash impaction, a mechanistic bouncing potential model, incorporating the phenomenon of recoiling of molten ash droplets after impaction, is employed. The bouncing potential is a representation of the excess energy possessed by the recoiling splat, and is used to determine the outcome of molten ash impaction – to stick or to bounce. Computational fluid dynamics techniques, incorporating the effect of thermophoresis, are adopted to estimate the arrival rate of ash particles, and the bouncing potential model, as a user-defined function, is incorporated in the simulation package to determine the status of the droplets after impaction. Two coals of Indian origin are simulated for slag-layer growth for a period of 100 min. The simulation results, when compared with field data provided by BHEL-Trichy, indicate that the model qualitatively predicts the growth of slag-layers. It has been further inferred that smaller particles dominate deposit formation and its growth.

Suggested Citation

  • Balakrishnan, S. & Nagarajan, R. & Karthick, K., 2015. "Mechanistic modeling, numerical simulation and validation of slag-layer growth in a coal-fired boiler," Energy, Elsevier, vol. 81(C), pages 462-470.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:462-470
    DOI: 10.1016/j.energy.2014.12.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214014303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Yongtie & Tay, Kunlin & Zheng, Zhimin & Yang, Wenming & Wang, Hui & Zeng, Guang & Li, Zhiwang & Keng Boon, Siah & Subbaiah, Prabakaran, 2018. "Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review," Applied Energy, Elsevier, vol. 230(C), pages 1447-1544.
    2. Chen, Zhichao & Yuan, Zhenhua & Zhang, Bo & Qiao, Yanyu & Li, Jiawei & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of secondary air mass flow rate ratio on the slagging characteristics of the pre-combustion chamber in industrial pulverized coal-fired boiler," Energy, Elsevier, vol. 251(C).
    3. Hamid Sefidari & Bo Lindblom & Lars-Olof Nordin & Henrik Wiinikka, 2020. "The Feasibility of Replacing Coal with Biomass in Iron-Ore Pelletizing Plants with Respect to Melt-Induced Slagging," Energies, MDPI, vol. 13(20), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:462-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.