IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v71y2014icp355-366.html
   My bibliography  Save this article

Evaluation of massive exhaust gas recirculation and Miller cycle strategies for mixing-controlled low temperature combustion in a heavy duty diesel engine

Author

Listed:
  • Benajes, Jesús
  • Molina, Santiago
  • Novella, Ricardo
  • Belarte, Eduardo

Abstract

The future of compression ignition engines depends on their ability for keeping their competitiveness in terms of fuel consumption compared to spark-ignition engines. In this competitive framework, the Low Temperature Combustion (LTC) concept is a promising alternative to decrease NOx and soot emissions. Thus, this research focuses on implementing the LTC concept, but keeping the conventional mixing-controlled combustion process to overcome the well-known drawbacks of the highly-premixed combustion concepts, including load limitations and lack of combustion control.

Suggested Citation

  • Benajes, Jesús & Molina, Santiago & Novella, Ricardo & Belarte, Eduardo, 2014. "Evaluation of massive exhaust gas recirculation and Miller cycle strategies for mixing-controlled low temperature combustion in a heavy duty diesel engine," Energy, Elsevier, vol. 71(C), pages 355-366.
  • Handle: RePEc:eee:energy:v:71:y:2014:i:c:p:355-366
    DOI: 10.1016/j.energy.2014.04.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214004964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.04.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiboom, Alain & Tauzia, Xavier & Hétet, Jean-François, 2008. "Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine," Energy, Elsevier, vol. 33(1), pages 22-34.
    2. Desantes, J.M. & Torregrosa, A.J. & Broatch, A. & Olmeda, P., 2011. "Experiments on the influence of intake conditions on local instantaneous heat flux in reciprocating internal combustion engines," Energy, Elsevier, vol. 36(1), pages 60-69.
    3. Torregrosa, A.J. & Broatch, A. & Novella, R. & Mónico, L.F., 2011. "Suitability analysis of advanced diesel combustion concepts for emissions and noise control," Energy, Elsevier, vol. 36(2), pages 825-838.
    4. Shi, Lei & Cui, Yi & Deng, Kangyao & Peng, Haiyong & Chen, Yuanyuan, 2006. "Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR)," Energy, Elsevier, vol. 31(14), pages 2665-2676.
    5. Hountalas, D.T. & Mavropoulos, G.C. & Binder, K.B., 2008. "Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions," Energy, Elsevier, vol. 33(2), pages 272-283.
    6. Benajes, Jesús & Novella, Ricardo & García, Antonio & Arthozoul, Simon, 2011. "The role of in-cylinder gas density and oxygen concentration on late spray mixing and soot oxidation processes," Energy, Elsevier, vol. 36(3), pages 1599-1611.
    7. Jia, Ming & Xie, Maozhao & Wang, Tianyou & Peng, Zhijun, 2011. "The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation," Applied Energy, Elsevier, vol. 88(9), pages 2967-2975.
    8. Torres García, Miguel & José Jiménez-Espadafor Aguilar, Francisco & Sánchez Lencero, Tomás, 2009. "Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode," Energy, Elsevier, vol. 34(2), pages 159-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weichao Wang & Guiyong Wang & Zhengjiang Wang & Jilin Lei & Junwei Huang & Xuexuan Nie & Lizhong Shen, 2022. "Optimization of Miller Cycle, EGR, and VNT on Performance and NOx Emission of a Diesel Engine for Range Extender at High Altitude," Energies, MDPI, vol. 15(23), pages 1-20, November.
    2. Verschaeren, Roel & Verhelst, Sebastian, 2018. "Increasing exhaust temperature to enable after-treatment operation on a two-stage turbo-charged medium speed marine diesel engine," Energy, Elsevier, vol. 147(C), pages 681-687.
    3. Shuang He & Bao-Guo Du & Li-Yan Feng & Yao Fu & Jing-Chen Cui & Wu-Qiang Long, 2015. "A Numerical Study on Combustion and Emission Characteristics of a Medium-Speed Diesel Engine Using In-Cylinder Cleaning Technologies," Energies, MDPI, vol. 8(5), pages 1-20, May.
    4. Ameur, Houari, 2015. "Energy efficiency of different impellers in stirred tank reactors," Energy, Elsevier, vol. 93(P2), pages 1980-1988.
    5. Gonca, Guven, 2016. "Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)," Energy, Elsevier, vol. 109(C), pages 152-159.
    6. Wei, Shengli & Zhao, Xiqian & Liu, Xin & Qu, Xiaonan & He, Chunhui & Leng, Xianyin, 2019. "Research on effects of early intake valve closure (EIVC) miller cycle on combustion and emissions of marine diesel engines at medium and low loads," Energy, Elsevier, vol. 173(C), pages 48-58.
    7. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    8. Tavakoli, Sady & Jazayeri, S. Ali & Fathi, Morteza & Jahanian, Omid, 2016. "Miller cycle application to improve lean burn gas engine performance," Energy, Elsevier, vol. 109(C), pages 190-200.
    9. Qiao, Junhao & Liu, Jingping & Liang, Jichao & Jia, Dongdong & Wang, Rumin & Shen, Dazi & Duan, Xiongbo, 2023. "Experimental investigation the effects of Miller cycle coupled with asynchronous intake valves on cycle-to-cycle variations and performance of the SI engine," Energy, Elsevier, vol. 263(PD).
    10. Molina, S. & García, A. & Pastor, J.M. & Belarte, E. & Balloul, I., 2015. "Operating range extension of RCCI combustion concept from low to full load in a heavy-duty engine," Applied Energy, Elsevier, vol. 143(C), pages 211-227.
    11. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    12. Torregrosa, A.J. & Broatch, A. & Novella, R. & Gomez-Soriano, J. & Mónico, L.F., 2017. "Impact of gasoline and Diesel blends on combustion noise and pollutant emissions in Premixed Charge Compression Ignition engines," Energy, Elsevier, vol. 137(C), pages 58-68.
    13. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    14. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    15. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    2. Jia, Ming & Li, Yaopeng & Xie, Maozhao & Wang, Tianyou, 2013. "Numerical evaluation of the potential of late intake valve closing strategy for diesel PCCI (premixed charge compression ignition) engine in a wide speed and load range," Energy, Elsevier, vol. 51(C), pages 203-215.
    3. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    4. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Ganesh, D. & Nagarajan, G., 2010. "Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation," Energy, Elsevier, vol. 35(1), pages 148-157.
    6. Tira, H.S. & Herreros, J.M. & Tsolakis, A. & Wyszynski, M.L., 2012. "Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels," Energy, Elsevier, vol. 47(1), pages 620-629.
    7. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    8. Shen, Zhaojie & Liu, Zhongchang & Tian, Jing & Liu, Jiangwei, 2014. "Investigation of in-cylinder gas stratification of diesel engine during intake and compression stroke," Energy, Elsevier, vol. 72(C), pages 671-679.
    9. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    10. Machrafi, Hatim & Cavadias, Simeon & Amouroux, Jacques, 2010. "Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine," Energy, Elsevier, vol. 35(4), pages 1829-1838.
    11. Zhao, Yuwei & Wang, Ying & Li, Dongchang & Lei, Xiong & Liu, Shenghua, 2014. "Combustion and emission characteristics of a DME (dimethyl ether)-diesel dual fuel premixed charge compression ignition engine with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 72(C), pages 608-617.
    12. Torregrosa, A.J. & Broatch, A. & Novella, R. & Mónico, L.F., 2011. "Suitability analysis of advanced diesel combustion concepts for emissions and noise control," Energy, Elsevier, vol. 36(2), pages 825-838.
    13. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    14. Qiu, Liang & Cheng, Xiaobei & Liu, Bei & Dong, Shijun & Bao, Zufeng, 2016. "Partially premixed combustion based on different injection strategies in a light-duty diesel engine," Energy, Elsevier, vol. 96(C), pages 155-165.
    15. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions," Energy, Elsevier, vol. 57(C), pages 722-732.
    16. Rajasekar, E. & Murugesan, A. & Subramanian, R. & Nedunchezhian, N., 2010. "Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2113-2121, September.
    17. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    18. Tauzia, Xavier & Maiboom, Alain & Shah, Samiur Rahman, 2010. "Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine," Energy, Elsevier, vol. 35(9), pages 3628-3639.
    19. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    20. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:71:y:2014:i:c:p:355-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.