IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v54y2013icp167-173.html
   My bibliography  Save this article

Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant

Author

Listed:
  • Zulkifli, N.W.M.
  • Kalam, M.A.
  • Masjuki, H.H.
  • Shahabuddin, M.
  • Yunus, R.

Abstract

This paper presents the experimental results carried out to evaluate wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester using a four-ball machine for different regime of lubrication. The TMP ester is produced from palm oil, which is biodegradable and has high lubricity properties such as a higher flash point temperature and VI (viscosity index). Three different regimes of lubrications are investigated, which hydrodynamic, elasto hydrodynamic and boundary lubrications. Under these test conditions, the wear and friction characteristics of different TMP samples are measured and compared. For boundary lubrication, it is found that up to 3% addition of Palm oil-based TMP ester in OL (ordinary lubricant) decreases the maximum amount of WSD (wear scar diameter) and reduces (COF coefficient of friction) up to 30%. Highest amount of load (220 kg) carrying capacity was also found from the contamination of 3% TMP. For hydrodynamic lubrication, addition of 7% of TMP reduces the friction up to 50%. It is well known that mechanical efficiency of machinery component increases with decreasing COF. The results of this investigation will be used to develop new and efficient lubricant to substitute the petroleum-based lubricant partially for automotive engine application.

Suggested Citation

  • Zulkifli, N.W.M. & Kalam, M.A. & Masjuki, H.H. & Shahabuddin, M. & Yunus, R., 2013. "Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant," Energy, Elsevier, vol. 54(C), pages 167-173.
  • Handle: RePEc:eee:energy:v:54:y:2013:i:c:p:167-173
    DOI: 10.1016/j.energy.2013.01.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajendra Uppar & P. Dinesha & Shiva Kumar, 2023. "A critical review on vegetable oil-based bio-lubricants: preparation, characterization, and challenges," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9011-9046, September.
    2. Rasep, Z. & Muhammad Yazid, M.N.A.W. & Samion, S., 2021. "Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
    4. Huang, Chu & Zhu, Haixi & Ma, Yinjie & E, Jiaqiang, 2023. "Evaluation of lithium battery immersion thermal management using a novel pentaerythritol ester coolant," Energy, Elsevier, vol. 284(C).
    5. Mannekote, Jagadeesh K. & Kailas, Satish V. & Venkatesh, K. & Kathyayini, N., 2018. "Environmentally friendly functional fluids from renewable and sustainable sources-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1787-1801.
    6. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Gulzar, M. & Masjuki, H.H. & Alabdulkarem, Abdullah & Kalam, M.A. & Varman, M. & Zulkifli, N.W.M. & Zahid, Rehan & Yunus, R., 2017. "Chemically active oil filter to develop detergent free bio-based lubrication for diesel engine," Energy, Elsevier, vol. 124(C), pages 413-422.
    8. Chan, Chung-Hung & Tang, Sook Wah & Mohd, Noor Khairin & Lim, Wen Huei & Yeong, Shoot Kian & Idris, Zainab, 2018. "Tribological behavior of biolubricant base stocks and additives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 145-157.
    9. Abul Kalam Azad & Mohammad Golam Rasul & Subhash Chandra Sharma & Mohammad Masud Kamal Khan, 2017. "The Lubricity of Ternary Fuel Mixture Blends as a Way to Assess Diesel Engine Durability," Energies, MDPI, vol. 11(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:54:y:2013:i:c:p:167-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.