IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v124y2017icp413-422.html
   My bibliography  Save this article

Chemically active oil filter to develop detergent free bio-based lubrication for diesel engine

Author

Listed:
  • Gulzar, M.
  • Masjuki, H.H.
  • Alabdulkarem, Abdullah
  • Kalam, M.A.
  • Varman, M.
  • Zulkifli, N.W.M.
  • Zahid, Rehan
  • Yunus, R.

Abstract

In diesel engine lubricants, over-based detergent additives are typically used to neutralize acids. These additives are required for long service life, but their use results in hazardous emissions, which mainly include sulfur and ash content. To address this problem, this study investigates the detergent-free bio-based lubricant conditioning approach by using a chemically active oil filter. A standard filter element impregnated with sodium oxide particles was used to improve lubricant quality. In this research, palm trimethylolpropane ester was synthesized for use as the base oil for formulation of a detergent-free bio-based lubricant. A condition-based approach, in which two engine endurance tests were carried out, was adopted. Lubricant samples from new and engine-aged conditions were tested for viscosity, total acid number, total base number, and corrosion. Piston ring-cylinder sliding tests were conducted to determine the wear protection and friction behavior of lubricant samples. A comparative analysis showed that lubricant conditioning by a modified filter improved the alkaline reserve and controlled the viscosity increase, thus extending the bio-based lubricant service life from 80 h to 200 h. The bio-based lubricant conditioned by a chemically active filter exhibited reduced cylinder liner wear and friction coefficient by 9.2% and 12.9%, respectively.

Suggested Citation

  • Gulzar, M. & Masjuki, H.H. & Alabdulkarem, Abdullah & Kalam, M.A. & Varman, M. & Zulkifli, N.W.M. & Zahid, Rehan & Yunus, R., 2017. "Chemically active oil filter to develop detergent free bio-based lubrication for diesel engine," Energy, Elsevier, vol. 124(C), pages 413-422.
  • Handle: RePEc:eee:energy:v:124:y:2017:i:c:p:413-422
    DOI: 10.1016/j.energy.2017.02.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zulkifli, N.W.M. & Kalam, M.A. & Masjuki, H.H. & Shahabuddin, M. & Yunus, R., 2013. "Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant," Energy, Elsevier, vol. 54(C), pages 167-173.
    2. Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M., 2014. "Impact of biodiesel blend on injector deposit formation," Energy, Elsevier, vol. 72(C), pages 813-823.
    3. Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
    4. Tič, Vito & Tašner, Tadej & Lovrec, Darko, 2014. "Enhanced lubricant management to reduce costs and minimise environmental impact," Energy, Elsevier, vol. 77(C), pages 108-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    2. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    4. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    5. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    6. Rasep, Z. & Muhammad Yazid, M.N.A.W. & Samion, S., 2021. "Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Mannekote, Jagadeesh K. & Kailas, Satish V. & Venkatesh, K. & Kathyayini, N., 2018. "Environmentally friendly functional fluids from renewable and sustainable sources-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1787-1801.
    8. Thangarasu, Vinoth & Balaji, B. & Ramanathan, Anand, 2019. "Experimental investigation of tribo-corrosion and engine characteristics of Aegle Marmelos Correa biodiesel and its diesel blends on direct injection diesel engine," Energy, Elsevier, vol. 171(C), pages 879-892.
    9. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.
    10. M. Naveed & A. Arslan & H. M. A. Javed & T. Manzoor & M. M. Quazi & T. Imran & Z. M. Zulfattah & M. Khurram & I. M. R. Fattah, 2021. "State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids," Energies, MDPI, vol. 14(16), pages 1-35, August.
    11. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    13. Chan, Chung-Hung & Tang, Sook Wah & Mohd, Noor Khairin & Lim, Wen Huei & Yeong, Shoot Kian & Idris, Zainab, 2018. "Tribological behavior of biolubricant base stocks and additives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 145-157.
    14. Zhiyue Mu & Jianqin Fu & Feng Zhou & Kainan Yuan & Juan Yu & Dan Huang & Zhuangping Cui & Xiongbo Duan & Jingping Liu, 2023. "A Comparatively Experimental Study on the Performance and Emission Characteristics of a Diesel Engine Fueled with Tung Oil-Based Biodiesel Blends (B10, B20, B50)," Energies, MDPI, vol. 16(14), pages 1-15, July.
    15. Recep Çağrı Orman, 2023. "Effect of Adding Hexagonal Boron Nitride (hBN) Nano-Powder to Lubricant on Performance and Emissions in a Two-Stroke Gasoline Engine," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    16. Y.H. Teoh & K.H. Yu & H.G. How & H.-T. Nguyen, 2019. "Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends," Energies, MDPI, vol. 12(10), pages 1-17, May.
    17. Gulzar, M. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Zulkifli, N.W.M. & Mufti, R.A. & Liaquat, A.M. & Zahid, Rehan & Arslan, A., 2016. "Effects of biodiesel blends on lubricating oil degradation and piston assembly energy losses," Energy, Elsevier, vol. 111(C), pages 713-721.
    18. Abul Kalam Azad & Mohammad Golam Rasul & Subhash Chandra Sharma & Mohammad Masud Kamal Khan, 2017. "The Lubricity of Ternary Fuel Mixture Blends as a Way to Assess Diesel Engine Durability," Energies, MDPI, vol. 11(1), pages 1-15, December.
    19. Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
    20. Abdulelah Aljaafari & I. M. R. Fattah & M. I. Jahirul & Yuantong Gu & T. M. I. Mahlia & Md. Ariful Islam & Mohammad S. Islam, 2022. "Biodiesel Emissions: A State-of-the-Art Review on Health and Environmental Impacts," Energies, MDPI, vol. 15(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:124:y:2017:i:c:p:413-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.