IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v42y2012i1p424-433.html
   My bibliography  Save this article

Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs

Author

Listed:
  • Wei, Zhiqiang
  • Zhang, Bingjian
  • Wu, Shengyuan
  • Chen, Qinglin
  • Tsatsaronis, George

Abstract

Based on the concepts of avoidable/unavoidable exergy destructions and investment costs, this article presents an exergy analysis and an exergoeconomic evaluation to identify the potential energy savings in distillation processes. Methods for calculating the avoidable/unavoidable exergy destructions and investment costs for distillation columns, and hot-utility/cold-utility heat exchangers are proposed. For a distillation column, the unavoidable exergy destruction is estimated through the minimum reflux ratio, and the unavoidable investment cost is determined according to the minimum theoretical stage number obtained under the condition of total reflux. For the utility heat exchangers, the unavoidable exergy destruction is estimated through the minimum possible temperature difference, and the unavoidable investment cost corresponds to the maximum allowed temperature difference that is related to practical applications. A light-ends separation plant is used to demonstrate the performance of the proposed approach. The results indicate that the exergy-savings potential enables comparisons of energy-savings potentials among different system components, and the value of the cost-savings potential points out the cost that could be avoided in today’s technological and economic environment. The modified exergoeconomic factor provides the improvement direction in a more accurate way compared with the conventional one.

Suggested Citation

  • Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
  • Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:424-433
    DOI: 10.1016/j.energy.2012.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212002174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, G. & Morosuk, T., 2010. "Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas," Energy, Elsevier, vol. 35(2), pages 820-829.
    2. Chen, Q.L. & Yin, Q.H. & Hua, B., 2002. "An exergoeconomic approach for retrofit of fractionating systems," Energy, Elsevier, vol. 27(1), pages 65-75.
    3. Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
    4. Chen, Q.L. & Yin, Q.H. & Wang, S.P. & Hua, B., 2004. "Energy-use analysis and improvement for delayed coking units," Energy, Elsevier, vol. 29(12), pages 2225-2237.
    5. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    6. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Carassai, Anna, 2012. "Conventional and advanced exergetic analyses applied to a combined cycle power plant," Energy, Elsevier, vol. 41(1), pages 146-152.
    7. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    8. Boyano, A. & Blanco-Marigorta, A.M. & Morosuk, T. & Tsatsaronis, G., 2011. "Exergoenvironmental analysis of a steam methane reforming process for hydrogen production," Energy, Elsevier, vol. 36(4), pages 2202-2214.
    9. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
    10. Tsatsaronis, George & Kapanke, Kerstin & María Blanco Marigorta, Ana, 2008. "Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power," Energy, Elsevier, vol. 33(2), pages 321-330.
    11. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    12. Lazzaretto, A. & Toffolo, A., 2004. "Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design," Energy, Elsevier, vol. 29(8), pages 1139-1157.
    13. Rivero, Ricardo, 2001. "Exergy simulation and optimization of adiabatic and diabatic binary distillation," Energy, Elsevier, vol. 26(6), pages 561-593.
    14. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    15. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    16. Morosuk, Tatiana & Tsatsaronis, George, 2008. "A new approach to the exergy analysis of absorption refrigeration machines," Energy, Elsevier, vol. 33(6), pages 890-907.
    17. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    18. Rivero, Ricardo & Rendón, Consuelo & Gallegos, Salvador, 2004. "Exergy and exergoeconomic analysis of a crude oil combined distillation unit," Energy, Elsevier, vol. 29(12), pages 1909-1927.
    19. Chang, Hsuan & Chuang, Shang-Chih, 2003. "Process analysis using the concept of intrinsic and extrinsic exergy losses," Energy, Elsevier, vol. 28(12), pages 1203-1228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    2. Burak Yuksel & Ozgur Balli & Huseyin Gunerhan & Arif Hepbasli, 2020. "Comparative Performance Metric Assessment of A Military Turbojet Engine Utilizing Hydrogen And Kerosene Fuels Through Advanced Exergy Analysis Method," Energies, MDPI, vol. 13(5), pages 1-22, March.
    3. Blahušiak, M. & Kiss, A.A. & Kersten, S.R.A. & Schuur, B., 2016. "Quick assessment of binary distillation efficiency using a heat engine perspective," Energy, Elsevier, vol. 116(P1), pages 20-31.
    4. Ebrahimi, Armin & Meratizaman, Mousa & Akbarpour Reyhani, Hamed & Pourali, Omid & Amidpour, Majid, 2015. "Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit," Energy, Elsevier, vol. 90(P2), pages 1298-1316.
    5. Piekarczyk, Wodzisław & Czarnowska, Lucyna & Ptasiński, Krzysztof & Stanek, Wojciech, 2013. "Thermodynamic evaluation of biomass-to-biofuels production systems," Energy, Elsevier, vol. 62(C), pages 95-104.
    6. Arriola-Medellín, Alejandro & Manzanares-Papayanopoulos, Emilio & Romo-Millares, César, 2014. "Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis," Energy, Elsevier, vol. 72(C), pages 643-651.
    7. Onur Vahip Güler & Emine Yağız Gürbüz & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Advanced Exergoeconomic Assessment of CO 2 Emissions, Geo-Fluid and Electricity in Dual Loop Geothermal Power Plant," Energies, MDPI, vol. 16(8), pages 1-24, April.
    8. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    9. Jahromi, Farid Sadeghian & Beheshti, Masoud & Rajabi, Razieh Fereydon, 2018. "Comparison between differential evolution algorithms and response surface methodology in ethylene plant optimization based on an extended combined energy - exergy analysis," Energy, Elsevier, vol. 164(C), pages 1114-1134.
    10. Ebrahimi, Armin & Ziabasharhagh, Masoud, 2017. "Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses," Energy, Elsevier, vol. 126(C), pages 868-885.
    11. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    12. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    13. Burak Yuksel & Huseyin Gunerhan & Arif Hepbasli, 2020. "Assessing Exergy-Based Economic and Sustainability Analyses of a Military Gas Turbine Engine Fueled with Various Fuels," Energies, MDPI, vol. 13(15), pages 1-28, July.
    14. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    15. Koroglu, Turgay & Sogut, Oguz Salim, 2023. "Developing criteria for advanced exergoeconomic performance analysis of thermal energy systems: Application to a marine steam power plant," Energy, Elsevier, vol. 267(C).
    16. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    17. Sahraei, Mohammad Hossein & Farhadi, Fatola & Boozarjomehry, Ramin Bozorgmehry, 2013. "Analysis and interaction of exergy, environmental and economic in multi-objective optimization of BTX process based on evolutionary algorithm," Energy, Elsevier, vol. 59(C), pages 147-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoshgoftar Manesh, M.H. & Navid, P. & Blanco Marigorta, A.M. & Amidpour, M. & Hamedi, M.H., 2013. "New procedure for optimal design and evaluation of cogeneration system based on advanced exergoeconomic and exergoenvironmental analyses," Energy, Elsevier, vol. 59(C), pages 314-333.
    2. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    3. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
    4. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    5. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    6. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    7. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    8. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    9. Petrakopoulou, Fontina & Tsatsaronis, George & Morosuk, Tatiana & Paitazoglou, Christopher, 2012. "Environmental evaluation of a power plant using conventional and advanced exergy-based methods," Energy, Elsevier, vol. 45(1), pages 23-30.
    10. Lara, Yolanda & Petrakopoulou, Fontina & Morosuk, Tatiana & Boyano, Alicia & Tsatsaronis, George, 2017. "An exergy-based study on the relationship between costs and environmental impacts in power plants," Energy, Elsevier, vol. 138(C), pages 920-928.
    11. Soltani, S. & Yari, M. & Mahmoudi, S.M.S. & Morosuk, T. & Rosen, M.A., 2013. "Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit," Energy, Elsevier, vol. 59(C), pages 775-780.
    12. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    13. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    14. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    15. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    16. Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.
    17. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    18. Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
    19. Mortazavi, Arsham & Ameri, Mehran, 2018. "Conventional and advanced exergy analysis of solar flat plate air collectors," Energy, Elsevier, vol. 142(C), pages 277-288.
    20. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:424-433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.