IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i4p1694-1700.html
   My bibliography  Save this article

Improved load control for a steam cycle combined heat and power plant

Author

Listed:
  • Jonshagen, K.
  • Genrup, M.

Abstract

The problem of optimum load control of steam power plants has been dealt within many technical papers during the last decades. Deregulation of the power markets and close to the (bio-) fuel source thinking has lead to a trend of small scale combined heat and power plants. These plants are usually operated according to the heat demand and therefore they spend a significant time on partial load. The load control of such plants is in general done by partial arc control. This work applies a hybrid control strategy, which is a combination of partial arc control and sliding pressure control. The method achieves further improvement in performance at partial load. Hybrid control itself is not novel and has earlier been used on traditional coal-fired condensing plants. This has, to the author's knowledge, not earlier been applied on combined heat and power plants. The results show that there is a potential for improved electricity production at a significant part of the load range.

Suggested Citation

  • Jonshagen, K. & Genrup, M., 2010. "Improved load control for a steam cycle combined heat and power plant," Energy, Elsevier, vol. 35(4), pages 1694-1700.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1694-1700
    DOI: 10.1016/j.energy.2009.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209005398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zebian, Hussam & Mitsos, Alexander, 2014. "Pressurized OCC (oxy-coal combustion) process ideally flexible to the thermal load," Energy, Elsevier, vol. 73(C), pages 416-429.
    2. Zhang, Guangming & Zhang, Chao & Wang, Wei & Cao, Huan & Chen, Zhenyu & Niu, Yuguang, 2023. "Offline reinforcement learning control for electricity and heat coordination in a supercritical CHP unit," Energy, Elsevier, vol. 266(C).
    3. Xu, Jian-qun & Ma, Lin & Sun, You-yuan & Cao, Zu-qing, 2014. "Research on characteristics of varying conditions for nozzle governing stage based on dimensional analysis," Energy, Elsevier, vol. 65(C), pages 590-595.
    4. RĂșa, Jairo & Nord, Lars O., 2020. "Optimal control of flexible natural gas combined cycles with stress monitoring: Linear vs nonlinear model predictive control," Applied Energy, Elsevier, vol. 265(C).
    5. Powell, Kody M. & Sriprasad, Akshay & Cole, Wesley J. & Edgar, Thomas F., 2014. "Heating, cooling, and electrical load forecasting for a large-scale district energy system," Energy, Elsevier, vol. 74(C), pages 877-885.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:4:p:1694-1700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.