IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p1094-1100.html
   My bibliography  Save this article

Effect of the fuel injection strategy on the combustion process in a PFI boosted spark-ignition engine

Author

Listed:
  • Merola, Simona S.
  • Sementa, Paolo
  • Tornatore, Cinzia
  • Vaglieco, Bianca M.

Abstract

In this paper, the effect of different fuel injection strategies on the combustion process was investigated in a boosted port fuel injection spark-ignition engine. The experiments were performed on a partially transparent single-cylinder engine, equipped with a four-valve head and boost device. Single and double fuel injection strategies were tested in the open-valve condition. Moreover, two fuel injection pressures were considered. Optical techniques based on 2D-digital imaging were used to follow the flame propagation in the combustion chamber. In particular, the diffusion-controlled flames near valves and on cylinder walls due to the fuel film burning were studied. Two-colour pyrometry was employed to measure soot concentration. In-cylinder optical investigations were correlated to the engine parameters and to the exhaust emissions.

Suggested Citation

  • Merola, Simona S. & Sementa, Paolo & Tornatore, Cinzia & Vaglieco, Bianca M., 2010. "Effect of the fuel injection strategy on the combustion process in a PFI boosted spark-ignition engine," Energy, Elsevier, vol. 35(2), pages 1094-1100.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:1094-1100
    DOI: 10.1016/j.energy.2009.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420900231X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soid, S.N. & Zainal, Z.A., 2014. "Combustion characteristics and optimization of CPG (compressed producer gas) in a constant volume combustion chamber," Energy, Elsevier, vol. 73(C), pages 59-69.
    2. Costa, M. & Marchitto, L. & Merola, S.S. & Sorge, U., 2014. "Study of mixture formation and early flame development in a research GDI (gasoline direct injection) engine through numerical simulation and UV-digital imaging," Energy, Elsevier, vol. 77(C), pages 88-96.
    3. Pastor, J.V. & Bermúdez, V. & García-Oliver, J.M. & Ramírez-Hernández, J.G., 2011. "Influence of spray-glow plug configuration on cold start combustion for high-speed direct injection diesel engines," Energy, Elsevier, vol. 36(9), pages 5486-5496.
    4. Soid, S.N. & Zainal, Z.A., 2011. "Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review," Energy, Elsevier, vol. 36(2), pages 724-741.
    5. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    6. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    7. Zhang, Zhijin & Zhang, Haiyan & Wang, Tianyou & Jia, Ming, 2014. "Effects of tumble combined with EGR (exhaust gas recirculation) on the combustion and emissions in a spark ignition engine at part loads," Energy, Elsevier, vol. 65(C), pages 18-24.
    8. Irimescu, Adrian, 2011. "Fuel conversion efficiency of a port injection engine fueled with gasoline–isobutanol blends," Energy, Elsevier, vol. 36(5), pages 3030-3035.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:1094-1100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.