IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics036054422302666x.html
   My bibliography  Save this article

The crucial role of oxygen in NO heterogeneous reduction with NH3 at high temperature

Author

Listed:
  • Jiao, Anyao
  • Zhou, Zining
  • Yang, Xiuchao
  • Xu, Hongtao
  • Liu, Feng
  • Liao, Xiaowei
  • Liu, Jiaxun
  • Jiang, Xiumin

Abstract

The high-temperature ammonia-injected technology is acknowledged as a promising denitrification method with great NOx reduction potential. In this work, char reduction experiments and density functional theory (DFT) calculations were conducted to investigate the heterogeneous reduction mechanism of NO by ammonia (NH3) synergism with char, focusing on the role of O2. Experimental results indicate that O2 has an inhibition effect on the NO reduction efficiency, whose detailed mechanisms can be inferred from a molecular perspective. Theoretical results reveal that both Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms exist in the NH3-injected denitrification reactions, presenting significant differences in N2, N2O, and H2O evolution. By comparison, the E-R mechanism governs the NH3–NO reactions, which reduces barriers by up to 14.5 %. The presence of O2 can lead to a significant increase in the energy barriers with a concomitant decrease in reaction rates within a certain temperature range, which however does not change the dominant mechanism governing the NH3 and NO interactions. Although some controversies are found in the kinetic analysis when the temperature increases, the results here shed light on the NO heterogeneous reduction mechanisms with NH3 at high temperature, which also guides the coal/NH3 co-firing investigations.

Suggested Citation

  • Jiao, Anyao & Zhou, Zining & Yang, Xiuchao & Xu, Hongtao & Liu, Feng & Liao, Xiaowei & Liu, Jiaxun & Jiang, Xiumin, 2023. "The crucial role of oxygen in NO heterogeneous reduction with NH3 at high temperature," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302666x
    DOI: 10.1016/j.energy.2023.129272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302666X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alves, Luís & Holz, Laura I.V. & Fernandes, Celina & Ribeirinha, Paulo & Mendes, Diogo & Fagg, Duncan P. & Mendes, Adélio, 2022. "A comprehensive review of NOx and N2O mitigation from industrial streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Garbacz, Przemysław & Wejkowski, Robert, 2020. "Numerical research on the SNCR method in a grate boiler equipped with the innovative FJBS system," Energy, Elsevier, vol. 207(C).
    3. Fan, Weidong & Wu, Xiaofeng & Guo, Hao & Zhu, Jiangtao & Liu, Peng & Chen, Can & Wang, Yong, 2019. "Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature," Energy, Elsevier, vol. 173(C), pages 109-120.
    4. Jiao, Anyao & Zhang, Hai & Liu, Jiaxun & Shen, Jun & Jiang, Xiumin, 2017. "The role of CO played in the nitric oxide heterogeneous reduction: A quantum chemistry study," Energy, Elsevier, vol. 141(C), pages 1538-1546.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hai & Luo, Lei & Liu, Jiaxun & Jiao, Anyao & Liu, Jianguo & Jiang, Xiumin, 2019. "Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state," Energy, Elsevier, vol. 189(C).
    2. Yuan, Maobo & Wang, Chang’an & Zhao, Lin & Wang, Pengqian & Wang, Chaowei & Che, Defu, 2020. "Experimental and kinetics study of NO heterogeneous reduction by the blends of pyrolyzed and gasified semi-coke," Energy, Elsevier, vol. 207(C).
    3. Wilhelm Jan Tic & Joanna Guziałowska-Tic, 2019. "The Effect of Modifiers and Method of Application on Fine-Coal Combustion," Energies, MDPI, vol. 12(23), pages 1-15, November.
    4. Zou, Chan & Wang, Chunbo & Anthony, Edward, 2019. "The effect of CO on the transformation of arsenic species: A quantum chemistry study," Energy, Elsevier, vol. 187(C).
    5. Zou, Huihuang & Liu, Chao & Evrendilek, Fatih & He, Yao & Liu, Jingyong, 2021. "Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres," Renewable Energy, Elsevier, vol. 171(C), pages 1327-1343.
    6. Liu, Chao & Liu, Jingyong & Evrendilek, Fatih & Xie, Wuming & Kuo, Jiahong & Buyukada, Musa, 2020. "Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS," Renewable Energy, Elsevier, vol. 148(C), pages 1074-1093.
    7. Hu, Fan & Xiong, Biao & Huang, Xiaohong & Liu, Zhaohui, 2023. "Theoretical analysis and experimental verification of diminishing the diffusion influence on determination of char oxidation kinetics by thermo-gravimetric analysis," Energy, Elsevier, vol. 275(C).
    8. Mushtaq, Muhammad Asim & Arif, Muhammad & Yasin, Ghulam & Tabish, Mohammad & Kumar, Anuj & Ibraheem, Shumaila & Ye, Wen & Ajmal, Saira & Zhao, Jie & Li, Pengyan & Liu, Jianfang & Saad, Ali & Fang, Xia, 2023. "Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302666x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.