IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v26y2001i4p401-412.html
   My bibliography  Save this article

Experimental study on an enhanced falling film evaporation–air flow absorption and closed circulation solar still

Author

Listed:
  • Hongfei, Zheng

Abstract

An active regenerative solar still, 1.03 m2 in area, which can reuse the latent heat of condensation and the sensible heat of brine is constructed and tested under practical weather conditions. In this still, a considerable fraction of the latent and sensible heat is successfully recycled and utilized for preheating the feedstock and recycling air via a falling film evaporator–condenser. The thermal performance of the system is greatly improved because of the technology of the forced thin layer evaporation and film condensation used. As a result, the yield is about two to three times greater than that of a conventional single basin type solar still.

Suggested Citation

  • Hongfei, Zheng, 2001. "Experimental study on an enhanced falling film evaporation–air flow absorption and closed circulation solar still," Energy, Elsevier, vol. 26(4), pages 401-412.
  • Handle: RePEc:eee:energy:v:26:y:2001:i:4:p:401-412
    DOI: 10.1016/S0360-5442(01)00007-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420100007X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(01)00007-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aboabboud, M.M. & Horvath, L. & Szépvölgy, J. & Mink, G. & Radhika, E. & Kudish, A.I., 1997. "The use of a thermal energy recycle unit in conjunction with a basin-type solar still for enhanced productivity," Energy, Elsevier, vol. 22(1), pages 83-91.
    2. Aboabboud, M.M. & Horvath, L. & Mink, G. & Yasin, M. & Kudish, A.I., 1996. "An energy saving atmospheric evaporator utilizing low grade thermal or waste energy," Energy, Elsevier, vol. 21(12), pages 1107-1117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    2. Nasr, Abdelaziz & Debbissi Hfaiedh, Chokri & Ben Nasrallah, Sassi, 2011. "Numerical study of evaporation by mixed convection of a binary liquid film," Energy, Elsevier, vol. 36(5), pages 2316-2327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongfei, Zheng & Xinshi, Ge, 2002. "Steady-state experimental study of a closed recycle solar still with enhanced falling film evaporation and regeneration," Renewable Energy, Elsevier, vol. 26(2), pages 295-308.
    2. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:26:y:2001:i:4:p:401-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.