IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000580.html
   My bibliography  Save this article

Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions

Author

Listed:
  • Zhou, Lijun
  • Zhou, Xihua
  • Fan, Chaojun
  • Bai, Gang
  • Yang, Lei
  • Wang, Yiqi

Abstract

Flue gas (CO2/N2) injection into coal seam is promised to achieve both reduction of greenhouse gas emission and enhancement of methane recovery. An improved heat-solid-fluid coupling model governing the equations of coal deformation, fluid transport, heat conservation, and porosity/permeability is proposed. After validating, the mathematic model is applied to simulate the flue gas injection promoted gas extraction with vary schedules of coupling patterns, extraction methods and influencing factors. Results show that the proposed model has coupled the complex interactions among solid deformation, multi-flow of ternary gases and water, gas competitive sorption and thermal transfer. The CH4 pressure varies greatly between proposed model and fluid flow model, demonstrating large deviation when ignoring heat-fluid-solid interactions. The coal permeability first increases dominated by gas pressure drop, and then decreases as the arrival of injected flue gas. Flue gas injection prevents permeability from sharp reduction and deterioration triggered by pure CO2 injection. The effective extraction zone of flue gas injection expands faster than that of primary and CO2 promoted extraction. The influencing factors are initial permeability, injection pressure, N2 adsorption strain ratio, CO2 adsorption strain ratio, injection temperature and thermal expansion coefficient successively.

Suggested Citation

  • Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang & Yang, Lei & Wang, Yiqi, 2023. "Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000580
    DOI: 10.1016/j.energy.2023.126664
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    2. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    3. Fan, Zhanglei & Fan, Gangwei & Zhang, Dongsheng & Zhang, Lei & Zhang, Shuai & Liang, Shuaishuai & Yu, Wei, 2021. "Optimal injection timing and gas mixture proportion for enhancing coalbed methane recovery," Energy, Elsevier, vol. 222(C).
    4. Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    2. Zhang, Baoxin & Deng, Ze & Fu, Xuehai & Yu, Kun & Zeng, Fanhua (Bill), 2023. "An experimental study on the effects of acidization on coal permeability: Implications for the enhancement of coalbed methane production," Energy, Elsevier, vol. 280(C).
    3. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    4. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    5. Zhao, Changxin & Cheng, Yuanping & Li, Wei & Wang, Liang & Zhang, Kaizhong & Wang, Chenghao, 2023. "Critical stress related to coalbed methane migration pattern: Model development and experimental validation," Energy, Elsevier, vol. 284(C).
    6. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    7. Du, Shuyi & Wang, Meizhu & Yang, Jiaosheng & Zhao, Yang & Wang, Jiulong & Yue, Ming & Xie, Chiyu & Song, Hongqing, 2023. "An enhanced prediction framework for coalbed methane production incorporating deep learning and transfer learning," Energy, Elsevier, vol. 282(C).
    8. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    9. Ziwen Li & Hongjin Yu & Yansong Bai, 2022. "Numerical Simulation of CO 2 -ECBM Based on Multi-Physical Field Coupling Model," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    10. Chengwang Wang & Zixi Guo & Lifeng Zhang & Yunwei Kang & Zhenjiang You & Shuguang Li & Yubin Wang & Huaibin Zhen, 2022. "3D Fracture Propagation Simulation and Pressure Decline Analysis Research for I-Shaped Fracture of Coalbed," Energies, MDPI, vol. 15(16), pages 1-20, August.
    11. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    12. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    13. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    14. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    15. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    16. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    17. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    18. Liu, Xudong & Sang, Shuxun & Zhou, Xiaozhi & Wang, Ziliang, 2023. "Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM," Energy, Elsevier, vol. 262(PA).
    19. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    20. Fan, Zhanglei & Fan, Gangwei & Zhang, Dongsheng & Zhang, Lei & Zhang, Shuai & Liang, Shuaishuai & Yu, Wei, 2021. "Optimal injection timing and gas mixture proportion for enhancing coalbed methane recovery," Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.