IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222032558.html
   My bibliography  Save this article

Modeling microexplosion mechanism in droplet combustion: Puffing and droplet breakup

Author

Listed:
  • Kumar, Atul
  • Chen, Hsien-Wen
  • Yang, Shouyin

Abstract

This study improved existing models by conducting experiments to determine breakup delay, child droplet dynamics, and the effect of microexplosion. Direct imaging was used, and droplets were suspended on a holder. The initial droplet diameter was between 0.5 and 1 mm, the temperature ranged from 700 to 1500 K, and the concentration of water in combustible liquid varied from 5 to 15 wt%. The process of microexplosion was simplified to interpret experimental results by assuming that water subdroplets were spherical and located in the center of a spherical nonemulsified fuel droplet and that water subdroplets can be present anywhere in the emulsified fuel droplet. The modeling results are consistent with the experimental results. The predicted and experimental droplet breakup times differed by 15 wt% or less for nonemulsified fuels and by 35 wt% or less for emulsified fuels. The postbreakup analysis revealed the microexplosion strength and its effect on child droplets. The prediction of microexplosion strength K was based on the superheating of water subdroplets. This model accounts for almost all parameters to approximate experimental results. This study improved the models of microexplosion to facilitate their use in the secondary atomization of multicomponent fuels.

Suggested Citation

  • Kumar, Atul & Chen, Hsien-Wen & Yang, Shouyin, 2023. "Modeling microexplosion mechanism in droplet combustion: Puffing and droplet breakup," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032558
    DOI: 10.1016/j.energy.2022.126369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. rahimi, Hadi & Ghobadian, Barat & Yusaf, Talal & Najafi, Gholamhasan & Khatamifar, Mahdi, 2009. "Diesterol: An environment-friendly IC engine fuel," Renewable Energy, Elsevier, vol. 34(1), pages 335-342.
    2. Yang, S.I. & Wu, M.S., 2017. "The droplet combustion and thermal characteristics of pinewood bio-oil from slow pyrolysis," Energy, Elsevier, vol. 141(C), pages 2377-2386.
    3. Seifi, Mohammad Reza & Desideri, Umberto & Ghorbani, Zahra & Antonelli, Marco & Frigo, Stefano & Hassan-Beygi, Seyed Reza & Ghobadian, Barat, 2019. "Statistical evaluation of the effect of water percentage in water-diesel emulsion on the engine performance and exhaust emission parameters," Energy, Elsevier, vol. 180(C), pages 797-806.
    4. Wu, M.S. & Yang, S.I., 2016. "Combustion characteristics of multi-component cedar bio-oil/kerosene droplet," Energy, Elsevier, vol. 113(C), pages 788-795.
    5. Shen, Shiquan & Sun, Kai & Che, Zhizhao & Wang, Tianyou & Jia, Ming & Cai, Junqian, 2020. "Mechanism of micro-explosion of water-in-oil emulsified fuel droplet and its effect on soot generation," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Kai & Liu, Yu & Wang, Chengxin & Tian, Junjian & Song, Zhihui & Lin, Qizhao & Meng, Kesheng, 2021. "Experimental study on the evaporation characteristics of biodiesel-ABE blended droplets," Energy, Elsevier, vol. 236(C).
    2. Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
    3. Hosseini, Seyyed Hassan & Rastegari, Hajar & Aghbashlo, Mortaza & Hajiahmad, Ali & Hosseinzadeh-Bandbafha, Homa & Mohammadi, Pouya & Jamal Sisi, Abdollah & Khalife, Esmail & Lam, Su Shiung & Pan, Junt, 2022. "Effects of metal-organic framework nanoparticles on the combustion, performance, and emission characteristics of a diesel engine," Energy, Elsevier, vol. 260(C).
    4. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    5. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    6. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    7. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    8. Behdad Shadidi & Hossein Haji Agha Alizade & Gholamhassan Najafi, 2021. "The Influence of Diesel–Ethanol Fuel Blends on Performance Parameters and Exhaust Emissions: Experimental Investigation and Multi-Objective Optimization of a Diesel Engine," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    9. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Dmitrii V. Antonov & Roman M. Fedorenko & Leonid S. Yanovskiy & Pavel A. Strizhak, 2023. "Physical and Mathematical Models of Micro-Explosions: Achievements and Directions of Improvement," Energies, MDPI, vol. 16(16), pages 1-16, August.
    11. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    12. Park, Ho Young & Han, Karam & Yu, Geun Sil & Jang, Jihoon & Park, Sangbin & Kim, Hyun Hee & Min, Kyong-il & Kim, Jae-Kon, 2020. "Properties of bioliquids and their impacts on combustion and boiler operation," Energy, Elsevier, vol. 193(C).
    13. Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
    14. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
    15. Noorollahi, Yaser & Azadbakht, Mohsen & Ghobadian, Barat, 2018. "The effect of different diesterol (diesel–biodiesel–ethanol) blends on small air-cooled diesel engine performance and its exhaust gases," Energy, Elsevier, vol. 142(C), pages 196-200.
    16. Han, Kai & Pang, Bo & Zhao, Changlu & Ni, Zhaojing & Qi, Zhengda, 2019. "An experimental study of the puffing and evaporation characteristics of acetone–butanol–ethanol (ABE) and diesel blend droplets," Energy, Elsevier, vol. 183(C), pages 331-340.
    17. Jegannathan, Kenthorai Raman & Chan, Eng-Seng & Ravindra, Pogaku, 2009. "Harnessing biofuels: A global Renaissance in energy production?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2163-2168, October.
    18. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    19. Milad Ghorbanzadeh & Mohamad Issa & Adrian Ilinca, 2023. "Experimental Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust Gas Emissions," Energies, MDPI, vol. 16(8), pages 1-15, April.
    20. Kim, Tae Young & Lee, Seokhwan & Kang, Kernyong, 2015. "Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels," Energy, Elsevier, vol. 93(P2), pages 2241-2250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.