IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032133.html
   My bibliography  Save this article

Numerical investigations of the flow control effect on a thick wind turbine airfoil using deformable trailing edge flaps

Author

Listed:
  • Qian, Yaoru
  • Zhang, Yuquan
  • Sun, Yukun
  • Wang, Tongguang

Abstract

Numerical investigations have been carried out regarding the aerodynamic performance of deformable trailing edge flaps (DTEFs) to reduce the unsteady loads on the FFA-W3-241 airfoil under dynamic stall conditions. Simulations were conducted within the framework of OpenFOAM using Reynolds-averaged Navier-Stokes (RANS) approach with the SST k-ω turbulence model and dynamic mesh technique. The control effects of the DTEF size and deflection angle on the stationary airfoil were evaluated through comparative calculations. Then, comprehensive simulations were conducted to gain a deeper insight into the aerodynamic characteristics of a combined simultaneous airfoil-DTEF oscillating motion. Effects of the flap size, oscillation amplitude, frequency, and phase shifts on the airfoil lift and drag hysteresis loops have been analyzed. When the DTEFs oscillate in the same frequency as the airfoil pitch motion and with the phase shift angle of π, the dynamic load can be effectively alleviated. Under this condition, with the appropriate arrangement of flap size and oscillation amplitude, reduction of the lift fluctuations during dynamic motion can be achieved by a maximum of 42.78%, and the corresponding lift-to-drag ratio can also be regulated within a small variation range at a relatively high level.

Suggested Citation

  • Qian, Yaoru & Zhang, Yuquan & Sun, Yukun & Wang, Tongguang, 2023. "Numerical investigations of the flow control effect on a thick wind turbine airfoil using deformable trailing edge flaps," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032133
    DOI: 10.1016/j.energy.2022.126327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    2. Wang, Haipeng & Jiang, Xiao & Chao, Yun & Li, Qian & Li, Mingzhou & Zheng, Wenniu & Chen, Tao, 2019. "Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine," Energy, Elsevier, vol. 182(C), pages 988-998.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Jiayan Zhou & Huijuan Guo & Yuan Zheng & Zhi Zhang & Cong Yuan & Bin Liu, 2023. "Research on Wake Field Characteristics and Support Structure Interference of Horizontal Axis Tidal Stream Turbine," Energies, MDPI, vol. 16(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    2. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    3. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    4. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    5. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    6. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    7. Akhter, Md Zishan & Ali, Ahmed Riyadh & Jawahar, Hasan Kamliya & Omar, Farag Khalifa & Elnajjar, Emad, 2023. "Performance enhancement of small-scale wind turbine featuring morphing blades," Energy, Elsevier, vol. 278(C).
    8. Baocheng Zhou & Shaochun Ma & Weiqing Li & Wenzhi Li & Cong Peng, 2023. "Study on the Influence Mechanism of Energy Consumption of Sugarcane Harvester Extractor by Fluid Simulation and Experiment," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    9. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    10. Fan, Menghao & Sun, Zhaocheng & Dong, Xiangwei & Li, Zengliang, 2022. "Numerical and experimental investigation of bionic airfoils with leading-edge tubercles at a low-Re in considering stall delay," Renewable Energy, Elsevier, vol. 200(C), pages 154-168.
    11. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    12. Kun, Wang & Fu, Chen & Jianyang, Yu & Yanping, Song, 2020. "Nested sparse-grid Stochastic Collocation Method for uncertainty quantification of blade stagger angle," Energy, Elsevier, vol. 201(C).
    13. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    14. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).
    15. Hai Du & Lejie Yang & Shuo Chen & Wenxiao Zhang & Shengchun Han, 2022. "Effect of Multistage Circulation Control on Blade Aerodynamic Performance," Energies, MDPI, vol. 15(19), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.