IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222025610.html
   My bibliography  Save this article

Numerical simulations of the synthetic processes and consequences of secondary hydrates during depressurization of a horizontal well in the hydrates production

Author

Listed:
  • Shen, Zhicong
  • Wang, Dong
  • Zheng, Tianyuan

Abstract

The depressurization method was implemented through a horizontal well in the production test at Shenhu, the South China Sea in 2020. The numerical model of a layered hydrate reservoir was established based on the in-field data of this test. The gas production rates measured was validated by comparing with the numerical results. The synthesis time, scopes, gas sources and maximum saturations of secondary hydrates were originally clarified by analyzing the data from different monitoring sections, which followed by the sensitivity analyses against the initial permeability of each hydrate-bearing layer. The effect of secondary hydrates on the short-term and long-term productions was quantified. The hydrates were resynthesized extensively above the interface between the natural gas hydrate layer and the mixing layer, which reduced the in-situ permeability and then the well gas production seriously. The areas affected by depressurization were constrained within the mixing layer. The gas sources were supplemented by the primary free gas and the gas decomposed by the hydrates in the upper mixing layer. The vertical extensions of the secondary hydrates were limited to about 5 m due to the lower permeability, while the horizontal distributions were approximately 78 m away from the horizontal well after 3 years. Given that the secondary hydrates were eliminated artificially, the cumulative gas volume produced in the horizontal well was increased by 24% after 3 years. The sensitivity analysis showed that the variations of permeability in the mixing layer had more obvious effects on secondary hydrates. Therefore, the hydraulic fracturing could be used to prevent the resynthesis of hydrates.

Suggested Citation

  • Shen, Zhicong & Wang, Dong & Zheng, Tianyuan, 2023. "Numerical simulations of the synthetic processes and consequences of secondary hydrates during depressurization of a horizontal well in the hydrates production," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025610
    DOI: 10.1016/j.energy.2022.125675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222025610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Li & Yin, Zhenyuan & Wan, Yizhao & Sun, Jianye & Wu, Nengyou & Veluswamy, Hari Prakash, 2020. "Evaluation and comparison of gas production potential of the typical four gas hydrate deposits in Shenhu area, South China sea," Energy, Elsevier, vol. 204(C).
    2. Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
    3. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    4. Huang, Li & Su, Zheng & Wu, Neng-You, 2015. "Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment," Energy, Elsevier, vol. 91(C), pages 782-798.
    5. Misyura, S.Y., 2020. "Dissociation of various gas hydrates (methane hydrate, double gas hydrates of methane-propane and methane-isopropanol) during combustion: Assessing the combustion efficiency," Energy, Elsevier, vol. 206(C).
    6. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    2. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    3. Sergey Y. Misyura & Igor G. Donskoy, 2021. "Dissociation and Combustion of a Layer of Methane Hydrate Powder: Ways to Increase the Efficiency of Combustion and Degassing," Energies, MDPI, vol. 14(16), pages 1-16, August.
    4. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    5. Li, Shuxia & Wu, Didi & Wang, Xiaopu & Hao, Yongmao, 2021. "Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens," Energy, Elsevier, vol. 232(C).
    6. Wang, Xiao-Hui & Chen, Yun & Li, Xing-Xun & Xu, Qiang & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2021. "An exergy-based energy efficiency analysis on gas production from gas hydrates reservoir by brine stimulation combined depressurization method," Energy, Elsevier, vol. 231(C).
    7. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    8. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & BriceƱo Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    9. Liang, Fachun & Wang, Chi & Tang, Guoxiang, 2020. "Experimental investigation on gas hydrate recovery using temperature separation mechanism of vortex tube," Energy, Elsevier, vol. 212(C).
    10. Yin, Faling & Gao, Yonghai & Chen, Ye & Sun, Baojiang & Li, Shaoqiang & Zhao, Danshi, 2022. "Numerical investigation on the long-term production behavior of horizontal well at the gas hydrate production site in South China Sea," Applied Energy, Elsevier, vol. 311(C).
    11. Huang, Li & Yin, Zhenyuan & Linga, Praveen & Veluswamy, Hari Prakash & Liu, Changling & Chen, Qiang & Hu, Gaowei & Sun, Jianye & Wu, Nengyou, 2022. "Experimental investigation on the production performance from oceanic hydrate reservoirs with different buried depths," Energy, Elsevier, vol. 242(C).
    12. Zhao, Xin & Fang, Qingchao & Qiu, Zhengsong & Mi, Shiyou & Wang, Zhiyuan & Geng, Qi & Zhang, Yubin, 2022. "Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates," Energy, Elsevier, vol. 242(C).
    13. Li, Yanlong & Wu, Nengyou & Ning, Fulong & Gao, Deli & Hao, Xiluo & Chen, Qiang & Liu, Changling & Sun, Jianye, 2020. "Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation," Energy, Elsevier, vol. 206(C).
    14. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    15. Liao, Bo & Wang, Jintang & Li, Mei-Chun & Lv, Kaihe & Wang, Qi & Li, Jian & Huang, Xianbing & Wang, Ren & Lv, Xindi & Chen, Zhangxin & Sun, Jinsheng, 2023. "Microscopic molecular and experimental insights into multi-stage inhibition mechanisms of alkylated hydrate inhibitor," Energy, Elsevier, vol. 279(C).
    16. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    17. Huang, Li & Yin, Zhenyuan & Wan, Yizhao & Sun, Jianye & Wu, Nengyou & Veluswamy, Hari Prakash, 2020. "Evaluation and comparison of gas production potential of the typical four gas hydrate deposits in Shenhu area, South China sea," Energy, Elsevier, vol. 204(C).
    18. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    19. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    20. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.