IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015833.html
   My bibliography  Save this article

Sewage sludge and wood sawdust co-firing: Gaseous emissions and particulate matter size distribution

Author

Listed:
  • Elbl, Patrik
  • Sitek, Tomáš
  • Lachman, Jakub
  • Lisý, Martin
  • Baláš, Marek
  • Pospíšil, Jiří

Abstract

Sewage sludge (SS) is an inevitable by-product of wastewater treatment and its disposal is a continuing challenge for sustainable development and environmental management. Co-firing dried SS and wood sawdust (WS) seems to be a feasible SS disposal method. In the presented work, composite pellets made at 100% WS/0% SS, 95/5, 90/10, 85/15 and 80/20 ratios were combusted in a 25-kW grate-fired boiler and the effects of SS on the emissions and particulate matter (PM) size distributions were studied. An online stack analyzer was used to measure gaseous emission values and the PM concentrations were determined by three different principles. HT-DLPI+ was deployed to measure the particle mass distribution of particles between 13 nm and 50 μm and a SMPS-3080 with a CPC-3775 by TSI was used to measure particle number concentrations between 19 and 1000 nm. The results reveal that with increasing SS content in the pellets, the NOx and SO2 emissions increased, while the CO emissions significantly decreased. PM emissions also showed a strong correlation with the amount of SS in the pellets. SS addition increased the mass median diameter, nonetheless the contribution of particles over 0.6 μm in aerodynamic diameter was found to be insignificant in all cases.

Suggested Citation

  • Elbl, Patrik & Sitek, Tomáš & Lachman, Jakub & Lisý, Martin & Baláš, Marek & Pospíšil, Jiří, 2022. "Sewage sludge and wood sawdust co-firing: Gaseous emissions and particulate matter size distribution," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015833
    DOI: 10.1016/j.energy.2022.124680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015833
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Junnan & Liao, Yanfen & Lin, Yan & Tian, Yunlong & Ma, Xiaoqian, 2019. "Study on thermal decomposition kinetics model of sewage sludge and wheat based on multi distributed activation energy," Energy, Elsevier, vol. 185(C), pages 795-803.
    2. Xiao, Zhihua & Yuan, Xingzhong & Jiang, Longbo & Chen, Xiaohong & Li, Hui & Zeng, Guangming & Leng, Lijian & Wang, Hou & Huang, Huajun, 2015. "Energy recovery and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage sludge and wood sawdust," Energy, Elsevier, vol. 91(C), pages 441-450.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Mingkai & Chen, Sheng & Lyu, Yue & Qiao, Yu & Xu, Minghou, 2023. "Thermochemical conversion of multiple alkali metals in food waste pellet with a core-shell structure," Energy, Elsevier, vol. 268(C).
    2. Żukowski, Witold & Jankowski, Dawid & Wrona, Jan & Berkowicz-Płatek, Gabriela, 2023. "Combustion behavior and pollutant emission characteristics of polymers and biomass in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuyang Cui & Junhong Yang & Xinyu Shi & Wanning Lei & Tao Huang & Chao Bai, 2019. "Experimental Investigation on the Energy Consumption, Physical, and Thermal Properties of a Novel Pellet Fuel Made from Wood Residues with Microalgae as a Binder," Energies, MDPI, vol. 12(18), pages 1-26, September.
    2. Vershinina, K. Yu & Shlegel, N.E. & Strizhak, P.A., 2019. "Relative combustion efficiency of composite fuels based on of wood processing and oil production wastes," Energy, Elsevier, vol. 169(C), pages 18-28.
    3. Zhai, Xiaowei & Ge, Hui & Wang, Tingyan & Shu, Chi-Min & Li, Jun, 2020. "Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal," Energy, Elsevier, vol. 205(C).
    4. Adam Smoliński & Natalia Howaniec & Andrzej Bąk, 2018. "Utilization of Energy Crops and Sewage Sludge in the Process of Co-Gasification for Sustainable Hydrogen Production," Energies, MDPI, vol. 11(4), pages 1-8, March.
    5. Izydorczyk, Grzegorz & Skrzypczak, Dawid & Kocek, Daria & Mironiuk, Małgorzata & Witek-Krowiak, Anna & Moustakas, Konstantinos & Chojnacka, Katarzyna, 2020. "Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets," Energy, Elsevier, vol. 194(C).
    6. Ma, Jiao & Feng, Shuo & Shen, Xiaoqian & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2021. "Integration of the pelletization and combustion of biodried products derived from municipal organic wastes: The influences of compression temperature and pressure," Energy, Elsevier, vol. 219(C).
    7. Andreas Nordin & Anna Strandberg & Sana Elbashir & Lars-Erik Åmand & Nils Skoglund & Anita Pettersson, 2020. "Co-Combustion of Municipal Sewage Sludge and Biomass in a Grate Fired Boiler for Phosphorus Recovery in Bottom Ash," Energies, MDPI, vol. 13(7), pages 1-24, April.
    8. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    9. Juan A. Conesa, 2021. "Sewage Sludge as Inhibitor of the Formation of Persistent Organic Pollutants during Incineration," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    10. Ma, Jiao & Mu, Lan & Zhang, Zhikun & Wang, Zhuozhi & Shen, Boxiong & Zhang, Lei & Li, Aimin, 2020. "The effects of the modification of biodegradation and the interaction of bulking agents on the combustion characteristics of biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 209(C).
    11. Frederico G. Fonseca & Andrés Anca-Couce & Axel Funke & Nicolaus Dahmen, 2022. "Challenges in Kinetic Parameter Determination for Wheat Straw Pyrolysis," Energies, MDPI, vol. 15(19), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.