IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011173.html
   My bibliography  Save this article

Rapid formation of methane hydrate in environment-friendly leucine-based complex systems

Author

Listed:
  • Qin, Yue
  • Shang, Liyan
  • Lv, Zhenbo
  • Liu, Zhiming
  • He, Jianyu
  • Li, Xu
  • Binama, Maxime
  • Yang, Lingyun
  • Wang, Deyang

Abstract

Given the growing demand for natural gas (NG) in energy supply systems worldwide, solidified natural gas (SNG) is viewed as a potential NG storage and transportation method owing to its numerous advantages. However, using significant amounts of sodium dodecyl sulfate (SDS) to improve its slow formation kinetics has a negative influence on the environment, and severe foaming hinders the system's recovery. To overcome the associated issues, the main promoter has been chosen to be the ecologically safe and non-foaming L-leucine, with low concentrations of SDS and NaCl, as well as glass beads of various particle sizes, added to achieve synergistic effects. The hydrophobic micro-regions created by the leucine molecules, as well as the porous hydrate characteristics, considerably enhanced hydrate formation in the leucine-based complex system. At the effective promotion concentration, the SDS dosage is reduced by 60–90%. Owing to their strong promotion effect and non-foaming feature, yielding almost non-toxic properties, the LS1 and LN4 systems may be employed commercially. With a target of advancing SNG technology, this study serves as a reference for future developments of SNG technology based on the idea of environmental friendliness.

Suggested Citation

  • Qin, Yue & Shang, Liyan & Lv, Zhenbo & Liu, Zhiming & He, Jianyu & Li, Xu & Binama, Maxime & Yang, Lingyun & Wang, Deyang, 2022. "Rapid formation of methane hydrate in environment-friendly leucine-based complex systems," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011173
    DOI: 10.1016/j.energy.2022.124214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong, Zheng Rong & Koh, Jun Wee & Linga, Praveen, 2017. "Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments," Energy, Elsevier, vol. 137(C), pages 518-529.
    2. Aghbashlo, Mortaza & Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Gupta, Vijai Kumar & Amiri, Hamid & Lam, Su Shiung & Morosuk, Tatiana & Tabatabaei, Meisam, 2021. "Exergoenvironmental analysis of bioenergy systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2019. "Investigation of the kinetics of mixed methane hydrate formation kinetics in saline and seawater," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Bhattacharjee, Gaurav & Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2020. "Seawater based mixed methane-THF hydrate formation at ambient temperature conditions," Applied Energy, Elsevier, vol. 271(C).
    5. Sun, Qibei & Kim, Shol & Kang, Yong Tae, 2017. "Study on dissociation characteristics of CO2 hydrate with THF for cooling application," Applied Energy, Elsevier, vol. 190(C), pages 249-256.
    6. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2017. "An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application," Applied Energy, Elsevier, vol. 188(C), pages 190-199.
    7. Xia, Zhi-ming & Li, Xiao-sen & Chen, Zhao-yang & Li, Gang & Cai, Jing & Wang, Yi & Yan, Ke-feng & Xu, Chun-gang, 2017. "Hydrate-based acidic gases capture for clean methane with new synergic additives," Applied Energy, Elsevier, vol. 207(C), pages 584-593.
    8. Hassan, Syed Tauseef & Khan, Danish & Zhu, Bangzhu & Batool, Bushra, 2022. "Is public service transportation increase environmental contamination in China? The role of nuclear energy consumption and technological change," Energy, Elsevier, vol. 238(PC).
    9. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    10. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh & Khan, Muhammad Kamran & Mahdavian, Seyed Mohammadreza, 2021. "The role of electricity mix and transportation sector in designing a green-growth strategy in Iran," Energy, Elsevier, vol. 233(C).
    11. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    12. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    13. Yu, Jinna & Saydaliev, Hayot Berk & Liu, Zhen & Nazar, Raima & Ali, Sajid, 2022. "The asymmetric nexus of solar energy and environmental quality: Evidence from Top-10 solar energy-consuming countries," Energy, Elsevier, vol. 247(C).
    14. Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
    2. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2021. "Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids," Applied Energy, Elsevier, vol. 287(C).
    3. Omran, Ahmed & Nesterenko, Nikolay & Valtchev, Valentin, 2022. "Zeolitic ice: A route toward net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2019. "Investigation of the kinetics of mixed methane hydrate formation kinetics in saline and seawater," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Zhang, Ye & Bhattacharjee, Gaurav & Dharshini Vijayakumar, Mohana & Linga, Praveen, 2022. "Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter," Applied Energy, Elsevier, vol. 311(C).
    6. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    7. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    8. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    9. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    10. Feng, Qian & Liu, Xian-jie & Peng, Zhi-gang & Zheng, Yong & Huo, Jin-hua & Liu, Huan, 2019. "Preparation of low hydration heat cement slurry with micro-encapsulated thermal control material," Energy, Elsevier, vol. 187(C).
    11. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    12. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
    13. Kim, Kwangbum & Truong-Lam, Hai Son & Lee, Ju Dong & Sa, Jeong-Hoon, 2023. "Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage," Energy, Elsevier, vol. 270(C).
    14. Panagiotis Kastanidis & George E. Romanos & Athanasios K. Stubos & Georgia Pappa & Epaminondas Voutsas & Ioannis N. Tsimpanogiannis, 2024. "Evaluation of a Simplified Model for Three-Phase Equilibrium Calculations of Mixed Gas Hydrates," Energies, MDPI, vol. 17(2), pages 1-22, January.
    15. Chong, Zheng Rong & Zhao, Jianzhong & Chan, Jian Hua Rudi & Yin, Zhenyuan & Linga, Praveen, 2018. "Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment," Applied Energy, Elsevier, vol. 214(C), pages 117-130.
    16. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    17. Takeya, Satoshi & Mimachi, Hiroko & Murayama, Tetsuro, 2018. "Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions," Applied Energy, Elsevier, vol. 230(C), pages 86-93.
    18. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    19. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    20. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.