IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222008581.html
   My bibliography  Save this article

Effects of fuel injection on the combustion and emission performance of a trapped vortex combustor

Author

Listed:
  • Li, Mingyu
  • Wang, Qian
  • He, Xiaomin
  • Xiao, Jiankun
  • Ma, Heng

Abstract

An experimental study was conducted at atmospheric pressure at 473 K to investigate the effects of fuel injection strategy on the combustion and emission characteristics of a trapped vortex combustor. In the test, the combustor was fueled by a simple pressure-swirl atomizer and novel atomizer to realize a normal circular spray pattern and fan spray pattern, respectively. The combustion and emission characteristics of the combustor were fully examined under a variety of Mach numbers and fuel-to-air ratios. The effects were directly explored in terms of combustion efficiency, pattern factor, and pollutant emissions. The results indicated that the combustion and emission characteristics of the combustor are highly dependent on the fuel injection strategy. When compared to the simple pressure-swirl atomizer, the novel atomizer realized evident advantages in terms of combustion efficiency, pattern factor, and pollutant emissions of carbon monoxide and unburned hydrocarbons under a wide range of operating conditions. This is mainly attributed to the suitable spray pattern and smaller droplet size realized by the novel atomizer.

Suggested Citation

  • Li, Mingyu & Wang, Qian & He, Xiaomin & Xiao, Jiankun & Ma, Heng, 2022. "Effects of fuel injection on the combustion and emission performance of a trapped vortex combustor," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008581
    DOI: 10.1016/j.energy.2022.123955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
    2. Feng, Rong & Zhu, Jiajian & Wang, Zhenguo & Sun, Mingbo & Wang, Hongbo & Cai, Zun & An, Bin & Li, Liang, 2021. "Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma," Energy, Elsevier, vol. 214(C).
    3. Zhang, R.C. & Fan, W.J. & Xing, F. & Song, S.W. & Shi, Q. & Tian, G.H. & Tan, W.L., 2015. "Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines," Energy, Elsevier, vol. 93(P2), pages 1535-1547.
    4. Xie, Jin & Zhu, Yuejin, 2020. "Characteristics study on a modified advanced vortex combustor," Energy, Elsevier, vol. 193(C).
    5. Jin, Yi & Li, Yefang & He, Xiaomin & Zhang, Jingyu & Jiang, Bo & Wu, Zejun & Song, Yaoyu, 2014. "Experimental investigations on flow field and combustion characteristics of a model trapped vortex combustor," Applied Energy, Elsevier, vol. 134(C), pages 257-269.
    6. Zhang, R.C. & Fan, W.J. & Shi, Q. & Tan, W.L., 2014. "Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines," Applied Energy, Elsevier, vol. 130(C), pages 314-325.
    7. Zhang, R.C. & Huang, X.Y. & Fan, W.J. & Bai, N.J., 2019. "Influence of injection mode on the combustion characteristics of slight temperature rise combustion in gas turbine combustor with cavity," Energy, Elsevier, vol. 179(C), pages 603-617.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yuling & He, Xiaomin & Li, Mingyu, 2020. "Effect of mainstream forced entrainment on the combustion performance of a gas turbine combustor," Applied Energy, Elsevier, vol. 279(C).
    2. Huang, Yakun & He, Xiaomin & Zhang, Huangwei & Zhu, Zhixin & Zhu, Huanyu, 2022. "Flame stability optimization of cavity primary air-jet form in an augmentor," Energy, Elsevier, vol. 239(PA).
    3. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Huang, X.Y. & Fan, X.Q., 2019. "Influence of flame stabilization and fuel injection modes on the flow and combustion characteristics of gas turbine combustor with cavity," Energy, Elsevier, vol. 189(C).
    4. Zhang, R.C. & Huang, X.Y. & Fan, W.J. & Bai, N.J., 2019. "Influence of injection mode on the combustion characteristics of slight temperature rise combustion in gas turbine combustor with cavity," Energy, Elsevier, vol. 179(C), pages 603-617.
    5. Zhang, R.C. & Hao, F. & Fan, W.J., 2018. "Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines," Applied Energy, Elsevier, vol. 225(C), pages 940-954.
    6. Li, Mingyu & He, Xiaomin & Zhao, Yuling & Jin, Yi & Yao, Kanghong & Ge, Zhenghao, 2018. "Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer," Applied Energy, Elsevier, vol. 216(C), pages 286-295.
    7. Miao, Junjie & Fan, Yuxin & Wu, Weiqiu & Zhao, Shilong, 2021. "Effect of air-assistant on ignition and flame-holding characteristics in a cavity-strut based combustor," Applied Energy, Elsevier, vol. 283(C).
    8. Zhang, R.C. & Bai, N.J. & Fan, W.J. & Yan, W.H. & Hao, F. & Yin, C.M., 2018. "Flow field and combustion characteristics of integrated combustion mode using cavity with low flow resistance for gas turbine engines," Energy, Elsevier, vol. 165(PA), pages 979-996.
    9. Tyliszczak, Artur & Boguslawski, Andrzej & Nowak, Dariusz, 2016. "Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system," Applied Energy, Elsevier, vol. 174(C), pages 153-165.
    10. Fu, Zaiguo & Gao, Huanhuan & Zeng, Zhuoxiong & Liu, Jiang & Zhu, Qunzhi, 2020. "Generation characteristics of thermal NOx in a double-swirler annular combustor under various inlet conditions," Energy, Elsevier, vol. 200(C).
    11. Zhang, Rongchun & Xu, Quanyong & Fan, Weijun, 2018. "Effect of swirl field on the fuel concentration distribution and combustion characteristics in gas turbine combustor with cavity," Energy, Elsevier, vol. 162(C), pages 83-98.
    12. Zhang, R.C. & Fan, W.J. & Xing, F. & Song, S.W. & Shi, Q. & Tian, G.H. & Tan, W.L., 2015. "Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines," Energy, Elsevier, vol. 93(P2), pages 1535-1547.
    13. Wan, Jianlong & Zhao, Haibo, 2021. "Ultra-lean blow-off dynamics of a holder-stabilized premixed flame in a preheated mesoscale combustor near laminar critical condition," Energy, Elsevier, vol. 228(C).
    14. Shilong, Zhao & Yuxin, Fan & Deng, Tiantai & Crookes, Danny, 2020. "Influence of injection scheme on flame characteristics in partially premixed combustion," Energy, Elsevier, vol. 205(C).
    15. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    16. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    17. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    18. Fuquan Deng & Minwei Zhao & Shunchuang Qin & Zhaokun Wang & Yongliang Xie & Hongtao Zheng & Xiao Liu & Feng Zhang, 2023. "Numerical Simulation Study on the Dynamics of Bluff-Body Flames under Oxygen-Lean Conditions," Energies, MDPI, vol. 17(1), pages 1-19, December.
    19. Gonca, Guven, 2017. "Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters," Energy, Elsevier, vol. 124(C), pages 579-588.
    20. Gao, Wei & Yan, Yunfei & Shen, Kaiming & Huang, Lujing & Zhao, Ting & Gao, Bo, 2022. "Combustion characteristic of premixed H2/air in the micro cavity combustor with guide vanes," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.