IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics036054422200216x.html
   My bibliography  Save this article

Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite

Author

Listed:
  • Liu, Zhuo
  • Li, Jianbo
  • Long, Xiaofei
  • Lu, Xiaofeng

Abstract

In this paper, the bed particles and their agglomerates that formed in circulating fluidized bed(CFB) during Zhundong lignite combustion were characterised to reveal the role of Na and ash-bed interaction on agglomeration. Experiments were conducted in a lab-scale CFB, within which either quartz or steel slag enriching in Mg was used as bed material to burn ZD at 950 °C. The particle size distribution, chemistry, mineralogy, morphology and in-situ sintering behaviour of the obtained samples were analysed in detail. Results showed that the discrete quartz particles were coated by a layer of submicron ash particles enriched in Ca and Mg. Na was less than 3% across the coating layer, but was enriched as Na silicates locally between quartz particles and initiated agglomeration. While heated in ESEM, Na silicates and those coated ashes became soft and even melted at 950-1100 °C, presenting a relatively low melting-point for agglomeration initiation. When steel slag was used as the bed material, Na in bottom ash became a negligible amount of 0.84 wt% as its chemical reaction with steel slag would not occur. The ash coating layer was also not formed on the steel slag, resulting in these particles in discrete state for agglomeration mitigation.

Suggested Citation

  • Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s036054422200216x
    DOI: 10.1016/j.energy.2022.123313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422200216X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Jin & Lu, Xiaofeng & Song, Yangfan & Zheng, Xiong & Lei, Xiujian & Liu, Zhuo & Fan, Xuchen & Liu, Congcong, 2021. "A comprehensive understanding of the non-uniform characteristics and regulation mechanism of six external loops in a 600 MW supercritical CFB boiler," Energy, Elsevier, vol. 222(C).
    2. Yang, Yu & Wang, Quanhai & Lu, Xiaofeng & Li, Jianbo & Liu, Zhuo, 2018. "Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor," Applied Energy, Elsevier, vol. 211(C), pages 631-638.
    3. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    4. Garcia, Eduardo & Liu, Hao, 2022. "Ilmenite as alternative bed material for the combustion of coal and biomass blends in a fluidised bed combustor to improve combustion performance and reduce agglomeration tendency," Energy, Elsevier, vol. 239(PA).
    5. Pérez-Orozco, Raquel & Patiño, David & Porteiro, Jacobo & Míguez, José Luis, 2020. "Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chang'an & Zhao, Lin & Sun, Ruijin & Zhou, Lei & Jin, Liyan & Che, Defu, 2022. "Experimental study on NO emission and ash deposition during oxy-fuel combustion of high-alkali coal under oxygen-staged conditions," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    2. Zhonghao Dong & Xiaofeng Lu & Rongdi Zhang & Jianbo Li & Zhaoliang Wu & Zhicun Liu & Yanting Yang & Quanhai Wang & Yinhu Kang, 2024. "Methods and Applications of Full-Scale Field Testing for Large-Scale Circulating Fluidized Bed Boilers," Energies, MDPI, vol. 17(4), pages 1-37, February.
    3. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    4. Miao, Hengyang & Wang, Zhiqing & Wang, Zhefan & Sun, Haochen & Li, Xiangyu & Liu, Zheyu & Dong, Libo & Zhao, Jiantao & Huang, Jiejie & Fang, Yitian, 2022. "Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue," Energy, Elsevier, vol. 255(C).
    5. Li, Fenghai & Zhao, Wei & Li, Junguo & Fan, Hongli & Xu, Meiling & Han, Guopeng & Guo, Mingxi & Wang, Zhiqing & Huang, Jiejie & Fang, Yitian, 2023. "Investigation on influencing mechanisms of phosphogypsum (PG) on the ash fusion behaviors of coal," Energy, Elsevier, vol. 268(C).
    6. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    7. Jin Yan & Xiaofeng Lu & Changfei Zhang & Qianjun Li & Jinping Wang & Shirong Liu & Xiong Zheng & Xuchen Fan, 2021. "An Experimental Study on the Characteristics of NO x Distributions at the SNCR Inlets of a Large-Scale CFB Boiler," Energies, MDPI, vol. 14(5), pages 1-15, February.
    8. Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
    9. Růžičková, Jana & Raclavská, Helena & Juchelková, Dagmar & Kucbel, Marek & Raclavský, Konstantin & Švédová, Barbora & Šafář, Michal & Pfeifer, Christoph & Hrbek, Jitka, 2022. "Organic compounds in the char deposits characterising the combustion of unauthorised fuels in residential boilers," Energy, Elsevier, vol. 257(C).
    10. Natalia Cid & Juan Jesús Rico & Raquel Pérez-Orozco & Ana Larrañaga, 2021. "Experimental Study of the Performance of a Laboratory-Scale ESP with Biomass Combustion: Discharge Electrode Disposition, Dynamic Control Unit and Aging Effect," Sustainability, MDPI, vol. 13(18), pages 1-12, September.
    11. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    12. Li, Guangyu & Xu, Shisen & Zhao, Xuebin & Sun, Ruijin & Wang, Chang’an & Liu, Kang & Mao, Qisen & Che, Defu, 2020. "Investigation of chemical composition and morphology of ash deposition in syngas cooler of an industrialized two-stage entrained-flow coal gasifier," Energy, Elsevier, vol. 194(C).
    13. Li, Meng & Wu, Hao & Xu, Jianliang & Yu, Guangsuo & Chen, Xueli, 2023. "Exploring influence of MgO/SiO2 on viscosity-temperature property of coal ash slags under entrained flow gasification condition," Energy, Elsevier, vol. 284(C).
    14. Zhan, Honglei & Wang, Yan & Chen, Mengxi & Chen, Ru & Zhao, Kun & Yue, Wenzheng, 2020. "An optical mechanism for detecting the whole pyrolysis process of oil shale," Energy, Elsevier, vol. 190(C).
    15. Juan Jesús Rico & Raquel Pérez-Orozco & Natalia Cid & Ana Larrañaga & José Luis Míguez Tabarés, 2020. "Viability of Agricultural and Forestry Residues as Biomass Fuels in the Galicia-North Portugal Region: An Experimental Study," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    16. César Álvarez-Bermúdez & Sergio Chapela & Luis G. Varela & Miguel Ángel Gómez, 2021. "CFD Simulation of an Internally Cooled Biomass Fixed-Bed Combustion Plant," Resources, MDPI, vol. 10(8), pages 1-19, July.
    17. Li, Xiangjie & He, Fang & Cai, Junmeng & Behrendt, Frank & Dieguez-Alonso, Alba & Schliermann, Thomas, 2022. "Oxidation kinetics of maize stover char at low temperature based on surface area and temperature correction," Energy, Elsevier, vol. 241(C).
    18. Li, Fenghai & Li, Yang & Fan, Hongli & Wang, Tao & Guo, Mingxi & Fang, Yitian, 2019. "Investigation on fusion characteristics of deposition from biomass vibrating grate furnace combustion and its modification," Energy, Elsevier, vol. 174(C), pages 724-734.
    19. Hao, Runlong & Zhang, Zili & Zeng, Qinda & Mao, Yumin & He, Hongzhou & Mao, Xingzhou & Yang, Fan & Zhao, Yi, 2018. "Synergistic behaviors of anthracite and dried sawdust sludge during their co-combustion: Conversion ratio, micromorphology variation and constituents evolutions," Energy, Elsevier, vol. 153(C), pages 776-787.
    20. Schneider, T. & Moffitt, J. & Volz, N. & Müller, D. & Karl, J., 2022. "Long-term effects of ilmenite on a micro-scale bubbling fluidized bed combined heat and power pilot plant for oxygen carrier aided combustion of wood," Applied Energy, Elsevier, vol. 314(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s036054422200216x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.