IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221014365.html
   My bibliography  Save this article

Parametric study of the slope confinement for passive control in a centrally-staged swirl burner

Author

Listed:
  • Song, Heng
  • Han, Xiao
  • Su, Tong
  • Xue, Xin
  • Zhang, Chi
  • Sung, Chih-Jen

Abstract

Lean premixed centrally-staged combustion holds the potential of meeting low-emission requirements, but it is known to be susceptible to thermoacoustic instabilities. A passive control method, using slope confinements has been demonstrated previously to be efficacy in suppressing thermoacoustic instabilities. Recognizing that the detailed flow features and the role of slope confinement structures associated with these thermoacoustic instabilities have not been well understood, the present study aims at revealing the suppressive mechanisms and assessing the suppressive efficacy of different slope confinements by measuring flow fields and conducting experiments with varying geometric parameters, including slope step height and slope angle. It is found that the slope confinements investigated have a general suppressive effect on thermoacoustic oscillations, which can be attributed to the limited vortex shedding from the dump plane. The slope confinement with smaller slope step height and slope angle is shown to have better performance on combustion stability. However, oscillations still occur in slope confinements with relatively large slope angle and step height. A qualitative relationship between the oscillation amplitude and the characteristic scale of corner recirculation zone is then established from the flow separation aspects. The present work provides insights into practical confinement design for passive control.

Suggested Citation

  • Song, Heng & Han, Xiao & Su, Tong & Xue, Xin & Zhang, Chi & Sung, Chih-Jen, 2021. "Parametric study of the slope confinement for passive control in a centrally-staged swirl burner," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014365
    DOI: 10.1016/j.energy.2021.121188
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Gang & Lu, ZhengLi & Guan, Yiheng & Li, Yuelin & Ji, C.Z., 2018. "Characterizing nonlinear interaction between a premixed swirling flame and acoustics: Heat-driven acoustic mode switching and triggering," Energy, Elsevier, vol. 158(C), pages 546-554.
    2. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    3. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.
    4. Song, Heng & Lin, Yuzhen & Han, Xiao & Yang, Dong & Zhang, Chi & Sung, Chih-Jen, 2020. "The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement," Energy, Elsevier, vol. 195(C).
    5. Sahebjamei, M. & Amani, E. & Nobari, M.R.H., 2019. "Numerical analysis of radial and angular stratification in turbulent swirling flames," Energy, Elsevier, vol. 173(C), pages 523-539.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xinyao & Han, Xiao & Sung, Chih-Jen, 2023. "Transitions of thermoacoustic modes and flame dynamics in a centrally-staged swirl combustor," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Heng & Lin, Yuzhen & Han, Xiao & Yang, Dong & Zhang, Chi & Sung, Chih-Jen, 2020. "The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement," Energy, Elsevier, vol. 195(C).
    2. Duan, Runze & Zhang, Heng & Zhang, Yan & Liu, Liansheng & Tian, Liang & Zhang, Xiaoyu, 2019. "Effect of longitudinal baffled blades on the first-order tangential acoustic mode in cylindrical chamber," Energy, Elsevier, vol. 183(C), pages 901-911.
    3. Sun, Yuze & Rao, Zhuming & Zhao, Dan & Wang, Bing & Sun, Dakun & Sun, Xiaofeng, 2020. "Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor," Applied Energy, Elsevier, vol. 264(C).
    4. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    5. Zhao, Xiaohuan & Jiang, Jiang & Zuo, Hongyan & Jia, Guohai, 2023. "Soot combustion characteristics of oxygen concentration and regeneration temperature effect on continuous pulsation regeneration in diesel particulate filter for heavy-duty truck," Energy, Elsevier, vol. 264(C).
    6. Kwak, Sanghyeok & Choi, Jaehong & Lee, Min Chul & Yoon, Youngbin, 2021. "Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor," Energy, Elsevier, vol. 230(C).
    7. Zhang, Zhihao & Liu, Xiao & Gong, Yaozhen & Yang, Yang & Tang, Zijia & Liu, Gang & Deng, Fuquan & Yang, Jialong & Zheng, Hongtao, 2020. "Experimental study of stratified swirl flame dynamics in a model gas turbine combustor," Energy, Elsevier, vol. 211(C).
    8. Rashwan, Sherif S. & Mohany, Atef & Dincer, Ibrahim, 2020. "Investigation of self-induced thermoacoustic instabilities in gas turbine combustors," Energy, Elsevier, vol. 190(C).
    9. Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
    10. Deng, Yuanwang & Feng, Changling & E, Jiaqiang & Wei, Kexiang & Zhang, Bin & Zhang, Zhiqing & Han, Dandan & Zhao, Xiaohuan & Xu, Wenwen, 2019. "Performance enhancement of the gasoline engine hydrocarbon catchers for reducing hydrocarbon emission during the cold-start period," Energy, Elsevier, vol. 183(C), pages 869-879.
    11. Gang Wu & Guoda Feng & Yuelin Li & Tao Ling & Xuejun Peng & Zhilai Su & Xiaohuan Zhao, 2024. "A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches," Energies, MDPI, vol. 17(3), pages 1-32, January.
    12. Rahimi, Sajjad & Mazaheri, Kiumars & Alipoor, Alireza & Mohammadpour, Amirreza, 2023. "The effect of hydrogen addition on methane-air flame in a stratified swirl burner," Energy, Elsevier, vol. 265(C).
    13. E, Jiaqiang & Zhao, Xiaohuan & Liu, Guanlin & Zhang, Bin & Zuo, Qingsong & Wei, Kexiang & Li, Hongmei & Han, Dandan & Gong, Jinke, 2019. "Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter," Applied Energy, Elsevier, vol. 254(C).
    14. E, Jiaqiang & Liu, Guanlin & Zhang, Zhiqing & Han, Dandan & Chen, Jingwei & Wei, Kexiang & Gong, Jinke & Yin, Zibin, 2019. "Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model," Applied Energy, Elsevier, vol. 243(C), pages 321-335.
    15. Wu, Gang & Xu, Xiao & Li, S. & Ji, C., 2019. "Experimental studies of mitigating premixed flame-excited thermoacoustic oscillations in T-shaped Combustor using an electrical heater," Energy, Elsevier, vol. 174(C), pages 1276-1282.
    16. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    17. Zhu, Rongjun & Pan, Deng & Ji, Chenzhen & Zhu, Tong & Lu, Pengpeng & Gao, Han, 2020. "Combustion instability analysis on a partially premixed swirl combustor by thermoacoustic experiments and modeling," Energy, Elsevier, vol. 211(C).
    18. Wu, Gang & Lu, Zhengli & Pan, Weichen & Guan, Yiheng & Li, Shihuai & Ji, C.Z., 2019. "Experimental demonstration of mitigating self-excited combustion oscillations using an electrical heater," Applied Energy, Elsevier, vol. 239(C), pages 331-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.