IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220317242.html
   My bibliography  Save this article

CFD modeling of coal dust migration in an 8.8-meter-high fully mechanized mining face

Author

Listed:
  • Du, Tao
  • Nie, Wen
  • Chen, Dawei
  • Xiu, Zihao
  • Yang, Bo
  • Liu, Qiang
  • Guo, Lidian

Abstract

The largest mining height of the fully mechanized mining face in the world is currently 8.8 m. A working face of this size has various problems, including the production of large amounts of dust, complicated dust migration laws, and difficulty in efficiently implementing dust removal measures. In view of these problems, computational fluid dynamics (CFD) modeling was used to simulate air flow and dust movement in a super-large fully mechanized mining face. The results were qualitatively and quantitatively analyzed, and field measurements were made to verify the accuracy of the simulated results. The simulation results showed that the air-flow increases, decreases, and then increases again during the movement of the working face. A high-concentration dust belt, of length approximately 120 m and a concentration of more than 3500 mg/m3, was formed by the roller. Dust reduction measures, such as spray dust-removal agents or chemical dust-removal agents, are proposed. These measures can provide a clean working environment and theoretical guidance for the safe production of coal in the future.

Suggested Citation

  • Du, Tao & Nie, Wen & Chen, Dawei & Xiu, Zihao & Yang, Bo & Liu, Qiang & Guo, Lidian, 2020. "CFD modeling of coal dust migration in an 8.8-meter-high fully mechanized mining face," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317242
    DOI: 10.1016/j.energy.2020.118616
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klimanek, Adam & Bigda, Joanna, 2018. "CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor," Energy, Elsevier, vol. 160(C), pages 710-719.
    2. Xu, Changwei & Nie, Wen & Liu, Zhiqiang & Peng, Huitian & Yang, Shibo & Liu, Qiang, 2019. "Multi-factor numerical simulation study on spray dust suppression device in coal mining process," Energy, Elsevier, vol. 182(C), pages 544-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    2. Sheng Wang & Xuelong Li & Qizhi Qin, 2022. "Study on Surrounding Rock Control and Support Stability of Ultra-Large Height Mining Face," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Gan, Jian & Wang, Deming & Xiao, Zhongmin & Wang, Ya-nan & Zhang, Kang & Zhu, Xiaolong & Li, Shuailong, 2023. "Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal," Energy, Elsevier, vol. 271(C).
    4. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    5. Tian, Zhang & Mu, Xinsheng & Deji, Jing & Shaocheng, Ge & Xiangxi, Meng & Shuli, Zhao & Xiaowei, Zhang, 2023. "Influence of aerodynamic pressure on dust removal by supersonic siphon atomization," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    2. Shen, Ye & Li, Xian & Yao, Zhiyi & Cui, Xiaoqiang & Wang, Chi-Hwa, 2019. "CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier," Energy, Elsevier, vol. 170(C), pages 497-506.
    3. Du, Shaohua & Yuan, Shouzheng & Zhou, Qiang, 2021. "Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 172(C), pages 424-439.
    4. Mahapatro, Abinash & Mahanta, Pinakeswar, 2020. "Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed," Renewable Energy, Elsevier, vol. 150(C), pages 1151-1159.
    5. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    6. Youngjoo Lee & Daesung Kwon & Changmin Park & Myoungjae Seo & TaeWon Seo, 2020. "Automated technique for high-pressure water-based window cleaning and accompanying parametric study," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-13, December.
    7. Xu, Changwei & Nie, Wen & Peng, Huitian & Zhang, Shaobo & Liu, Fei & Yi, Shixing & Cha, Xingpeng & Mwabaima, Felicie Ilele, 2023. "Numerical simulation of the dynamic wetting of coal dust by spray droplets," Energy, Elsevier, vol. 270(C).
    8. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    9. Wenchao Wang & Fayi Huang & Xianzhong Li, 2022. "Development of a portal-crane servo-spraying suppression system to reduce dust production at bulk cargo wharf," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1151-1161, June.
    10. Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).
    11. M. Shahabuddin & Sankar Bhattacharya, 2021. "Co-Gasification Characteristics of Coal and Biomass Using CO 2 Reactant under Thermodynamic Equilibrium Modelling," Energies, MDPI, vol. 14(21), pages 1-12, November.
    12. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    13. Hua, Yun & Nie, Wen & Liu, Qiang & Yin, Shuai & Peng, Huitian, 2020. "Effect of wind curtain on dust extraction in rock tunnel working face: CFD and field measurement analysis," Energy, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220317242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.