IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v200y2020ics036054422030699x.html
   My bibliography  Save this article

Study on the effect of hydrogen fraction on the premixed combustion characteristics of syngas/air mixtures

Author

Listed:
  • Jiang, Yan-huan
  • Li, Guo-xiu
  • Li, Hong-meng
  • Zhang, Guo-peng
  • Lv, Jia-cheng

Abstract

Effect of hydrogen fraction on the combustion characteristics of syngas/air mixtures was experimentally investigated at various hydrogen fractions and equivalence ratios in a turbulent combustion bomb under atmospheric temperature and pressure. The laminar burning velocity and turbulent burning velocity at various hydrogen fractions were measured, and the promotion of turbulence on the burning velocity at various hydrogen fractions was systematically investigated. The results show that the laminar burning velocity of the H2/CO/air mixture exhibits a non-linear increasing trend with increasing hydrogen fraction. With increasing equivalence ratio, the laminar burning velocity increases remarkably. Reaction CO + OH = CO2 + H is identified as the most dominate chain branching reactions and reaction H + OH + M = H2O + M is the most dominant chain termination reaction. The laminar burning velocity exhibits linear and non-linear growth with the maximum concentration of radical H and OH, respectively. With increasing the hydrogen fraction, the value of uT/uL shows a non-linear decreasing trend as a whole and the growth rate gradually decreases. As the equivalence ratio increases, the uT/uL value decrease. When the hydrogen fraction is more than 50%, the promoting effect of turbulence on the burning velocity decreases gradually.

Suggested Citation

  • Jiang, Yan-huan & Li, Guo-xiu & Li, Hong-meng & Zhang, Guo-peng & Lv, Jia-cheng, 2020. "Study on the effect of hydrogen fraction on the premixed combustion characteristics of syngas/air mixtures," Energy, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:energy:v:200:y:2020:i:c:s036054422030699x
    DOI: 10.1016/j.energy.2020.117592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030699X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Wen & Liu, Jing & Ma, Hongan & Liu, Yu & Liu, Aiguo, 2018. "Experimental study on the flame propagation and laminar combustion characteristics of landfill gas," Energy, Elsevier, vol. 158(C), pages 437-448.
    2. Li, Hong-Meng & Li, Guo-Xiu & Sun, Zuo-Yu & Zhou, Zi-Hang & Li, Yuan & Yuan, Ye, 2016. "Investigation on dilution effect on laminar burning velocity of syngas premixed flames," Energy, Elsevier, vol. 112(C), pages 146-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Zhang & Shanshan Zhang & Hua Zhou & Zhuyin Ren & Hongchuan Wang & Xiuxun Wang, 2022. "Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges," Energies, MDPI, vol. 15(23), pages 1-14, December.
    2. Baraiya, Nikhil A. & Ramanan, Vikram & Nagarajan, Baladandayuthapani & Vegad, Chetankumar S. & Chakravarthy, S.R., 2023. "Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor," Energy, Elsevier, vol. 263(PD).
    3. Zhang, Guo-Peng & Li, Guo-Xiu & Li, Hong-Meng & Lv, Jia-Cheng, 2022. "Effect of diluent gas on propagation and explosion characteristics of hydrogen-rich syngas laminar premixed flame," Energy, Elsevier, vol. 246(C).
    4. Zhong, Shenghui & Xu, Shijie & Bai, Xue-Song & Peng, Zhijun & Zhang, Fan, 2021. "Large eddy simulation of n-heptane/syngas pilot ignition spray combustion: Ignition process, liftoff evolution and pollutant emissions," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    2. Fu-Sheng Li & Guo-Xiu Li & Yan-Huan Jiang & Hong-Meng Li & Zuo-Yu Sun, 2017. "Study on the Effect of Flame Instability on the Flame Structural Characteristics of Hydrogen/Air Mixtures Based on the Fast Fourier Transform," Energies, MDPI, vol. 10(5), pages 1-16, May.
    3. Jóźwiak, Piotr & Hercog, Jarosław & Kiedrzyńska, Aleksandra & Badyda, Krzysztof, 2019. "CFD analysis of natural gas substitution with syngas in the industrial furnaces," Energy, Elsevier, vol. 179(C), pages 593-602.
    4. Rashwan, Sherif S. & Mohany, Atef & Dincer, Ibrahim, 2020. "Investigation of self-induced thermoacoustic instabilities in gas turbine combustors," Energy, Elsevier, vol. 190(C).
    5. Huang, Sheng & Zhang, Yu & Huang, Ronghua & Xu, Shijie & Ma, Yinjie & Wang, Zhaowen & Zhang, Xinhua, 2019. "Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames," Energy, Elsevier, vol. 171(C), pages 161-169.
    6. Xu, Cangsu & Wang, Hanyu & Oppong, Francis & Li, Xiaolu & Zhou, Kangquan & Zhou, Wenhua & Wu, Siyuan & Wang, Chongming, 2020. "Determination of laminar burning characteristics of a surrogate for a pyrolysis fuel using constant volume method," Energy, Elsevier, vol. 190(C).
    7. Willie Doaemo & Sahil Dhiman & Alexander Borovskis & Wenlan Zhang & Sumedha Bhat & Srishti Jaipuria & Mirzi Betasolo, 2021. "Assessment of municipal solid waste management system in Lae City, Papua New Guinea in the context of sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18509-18539, December.
    8. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Mohamad Yusof Idroas & Thanh Danh Le & Huu Tho Nguyen, 2022. "Experimental Studies of Combustion and Emission Characteristics of Biomass Producer Gas (BPG) in a Constant Volume Combustion Chamber (CVCC) System," Energies, MDPI, vol. 15(21), pages 1-18, October.
    9. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    10. Li, Hong-Meng & Li, Guo-Xiu & Jiang, Yan-Huan & Li, Lei & Li, Fu-Sheng, 2018. "Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions," Energy, Elsevier, vol. 157(C), pages 76-86.
    11. Ilbas, Mustafa & Karyeyen, Serhat, 2017. "Turbulent diffusion flames of a low-calorific value syngas under varying turbulator angles," Energy, Elsevier, vol. 138(C), pages 383-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:200:y:2020:i:c:s036054422030699x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.