IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics0360544220305041.html
   My bibliography  Save this article

Effect of gas impurity on the convective dissolution of CO2 in porous media

Author

Listed:
  • Mahmoodpour, Saeed
  • Amooie, Mohammad Amin
  • Rostami, Behzad
  • Bahrami, Flora

Abstract

Growing needs for energy and the essential role of fossil fuels in energy market require attempts such as carbon dioxide (CO2) sequestration in saline aquifers to stabilize and mitigate atmospheric carbon concentrations. The possibility of co-injection of impurities along with CO2 allows for the direct disposal of flue gas and hence a significant reduction in the cost of CO2 sequestration projects by eliminating the separation process. In this study, the results of series of novel experiments in a high-pressure visual porous cell are reported, which allow for visually and quantitatively examining the dynamics of convective dissolution in brine-saturated porous media in the presence of an overlying impure free gas phase with conditions that reflect more closely the subsurface conditions. We find cases with 10% (respectively, 20%) N2 impurity show higher (respectively, lower) dissolution flux and greater (respectively, smaller) pressure drop at early time as compared to those with pure CO2. To shed light on this non-trivial behavior, image analysis is performed and hydrodynamic dispersion is revealed as the root to this behavior. Robust scaling relations for the obtained dispersion coefficients and transition time to the shut-down dissolution regime are reported based on dimensionless numbers. Additionally, multiphysics numerical simulations are performed and coupled with the captured dispersion quantities. Our findings elucidate how the presence of impurity in gas stream affects the overall efficiency of CO2 convective mixing, and how its essence can be leveraged in practice while improving the numerical models.

Suggested Citation

  • Mahmoodpour, Saeed & Amooie, Mohammad Amin & Rostami, Behzad & Bahrami, Flora, 2020. "Effect of gas impurity on the convective dissolution of CO2 in porous media," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305041
    DOI: 10.1016/j.energy.2020.117397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220305041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of Joule–Thomson cooling to impure CO2 injection in depleted gas reservoirs," Applied Energy, Elsevier, vol. 113(C), pages 434-451.
    2. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
    3. Ajayi, Temitope & Awolayo, Adedapo & Gomes, Jorge S. & Parra, Humberto & Hu, Jialiang, 2019. "Large scale modeling and assessment of the feasibility of CO2 storage onshore Abu Dhabi," Energy, Elsevier, vol. 185(C), pages 653-670.
    4. Li, Didi & Jiang, Xi, 2017. "Numerical investigation of the partitioning phenomenon of carbon dioxide and multiple impurities in deep saline aquifers," Applied Energy, Elsevier, vol. 185(P2), pages 1411-1423.
    5. Cui, Guodong & Wang, Yi & Rui, Zhenhua & Chen, Bailian & Ren, Shaoran & Zhang, Liang, 2018. "Assessing the combined influence of fluid-rock interactions on reservoir properties and injectivity during CO2 storage in saline aquifers," Energy, Elsevier, vol. 155(C), pages 281-296.
    6. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    2. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    3. Kamal Jawher Khudaida & Diganta Bhusan Das, 2020. "A Numerical Analysis of the Effects of Supercritical CO 2 Injection on CO 2 Storage Capacities of Geological Formations," Clean Technol., MDPI, vol. 2(3), pages 1-32, September.
    4. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    5. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    6. Ren, Bo & Trevisan, Luca, 2020. "Characterization of local capillary trap clusters in storage aquifers," Energy, Elsevier, vol. 193(C).
    7. Kwanghee Jeong & Bruce W. E. Norris & Eric F. May & Zachary M. Aman, 2023. "Hydrate Formation from Joule Thomson Expansion Using a Single Pass Flowloop," Energies, MDPI, vol. 16(22), pages 1-16, November.
    8. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    9. Zhou, Xiang & Li, Xiuluan & Shen, Dehuang & Shi, Lanxiang & Zhang, Zhien & Sun, Xinge & Jiang, Qi, 2022. "CO2 huff-n-puff process to enhance heavy oil recovery and CO2 storage: An integration study," Energy, Elsevier, vol. 239(PB).
    10. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    11. Jing, Jing & Yang, Yanlin & Cheng, Jianmei & Ding, Zhaojing & Wang, Dandan & Jing, Xianwen, 2023. "Analysis of the effect of formation dip angle and injection pressure on the injectivity and migration of CO2 during storage," Energy, Elsevier, vol. 280(C).
    12. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    13. Jian, Guoqing & Gizzatov, Ayrat & Kawelah, Mohammed & AlYousef, Zuhair & Abdel-Fattah, Amr I., 2021. "Simply built microfluidics for fast screening of CO2 foam surfactants and foam model parameters estimation," Applied Energy, Elsevier, vol. 292(C).
    14. Wei, Ning & Li, Xiaochun & Wang, Yan & Zhu, Qianlin & Liu, Shengnan & Liu, Naizhong & Su, Xuebing, 2015. "Geochemical impact of aquifer storage for impure CO2 containing O2 and N2: Tongliao field experiment," Applied Energy, Elsevier, vol. 145(C), pages 198-210.
    15. Yao, Hongbo & Chen, Yuedu & Liang, Weiguo & Li, Zhigang & Song, Xiaoxia, 2023. "Experimental study on the permeability evolution of coal with CO2 phase transition," Energy, Elsevier, vol. 266(C).
    16. Ahmad, Najid & Du, Liangsheng, 2017. "Effects of energy production and CO2 emissions on economic growth in Iran: ARDL approach," Energy, Elsevier, vol. 123(C), pages 521-537.
    17. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    18. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    19. Yen Adams Sokama‐Neuyam & Jann Rune Ursin, 2018. "The coupled effect of salt precipitation and fines mobilization on CO2 injectivity in sandstone," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1066-1078, December.
    20. Gimeno, Beatriz & Artal, Manuela & Velasco, Inmaculada & Blanco, Sofía T. & Fernández, Javier, 2017. "Influence of SO2 on CO2 storage for CCS technology: Evaluation of CO2/SO2 co-capture," Applied Energy, Elsevier, vol. 206(C), pages 172-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.