IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics036054421931504x.html
   My bibliography  Save this article

Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR

Author

Listed:
  • Zouzou, B.
  • Dobrev, I.
  • Massouh, F.
  • Dizene, R.

Abstract

The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favorable to noise reduction and can operate at low velocity wind. The aerodynamic performance of this turbine is studied experimentally in wind tunnel as well as by CFD. In order to obtain the 3D-flow field around the wind turbine rotor, the numerical simulations are performed by means of detached eddy simulation method (DES). The simulation of pitch variation is made possible by using sliding-mesh method. Thus a specially created program adapts the pitch depending on the blade azimuthal position during rotation. The obtained results show that adapted pitch blades are preferable because they permit to obtain a power coefficient Cp that rivals other VAWT in the case of TSR<1. The maximum torque fluctuation during rotation is lower in the case of adapted variable-pitch compared to fixed-pitch and thus the maximum aerodynamic loads on the structure can be reduced. Moreover, the pitch adaptation leads to lower interaction effects between the upstream-blade wake and down-stream blades.

Suggested Citation

  • Zouzou, B. & Dobrev, I. & Massouh, F. & Dizene, R., 2019. "Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s036054421931504x
    DOI: 10.1016/j.energy.2019.07.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421931504X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    2. Hao, Wenxing & Li, Chun, 2020. "Performance improvement of adaptive flap on flow separation control and its effect on VAWT," Energy, Elsevier, vol. 213(C).
    3. Abed, Bouabdellah & Benzerdjeb, Abdelouahab & Benmansour, Abdeljellil & Achache, Habib & Ferhat, Rabia & Debz, Abderrahmene & Gorlov, Alaxender M., 2021. "An efficient hydrodynamic method for cross-flow turbines performance evaluation and comparison with the experiment," Renewable Energy, Elsevier, vol. 180(C), pages 993-1003.
    4. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).

    More about this item

    Keywords

    CFD; VAWT; Variable-pitch; 3D DES; UDF;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s036054421931504x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.