IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v164y2018icp218-235.html
   My bibliography  Save this article

Developing a novel methodology based on the adaptive neuro-fuzzy interference system for the exergoeconomic optimization of energy systems

Author

Listed:
  • Sayyaadi, Hoseyn
  • Baghsheikhi, Mostafa

Abstract

Optimal control and design of energy systems in some instances require the fast exergoeconomic optimization. Fuzzy inference systems (FIS) were previously employed for either the computerized iterative exergoeconomic optimization or fast optimization of the energy system. The shortcoming of the FIS system was that the requirement to have numerous fuzzy rules and fuzzy membership function that must be collected based on experts' knowledge and usually with try and error steps. On the other hand, conventional optimization methods such as genetic algorithm consume significant calculation time that makes them unsuitable for the fast optimization. In this paper, the adaptive neuro-fuzzy interference system known as the ANFIS was introduced for fast exergoeconomic optimization of energy systems. The ANFIS system automatically developed the required fuzzy items and used them for fast optimization of energy systems. It was employed on two case studies, one for exergoeconomic design and optimization of a benchmark energy system known as the CGAM problem. It was shown that the ANFIS could achieve the optimal solutions of systems with reasonable accuracy, very low computation time, and without dependency on experts' knowledge to develop fuzzy data. The ANFIS was found as an optimistic alternative for the fast optimization of energy systems.

Suggested Citation

  • Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2018. "Developing a novel methodology based on the adaptive neuro-fuzzy interference system for the exergoeconomic optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 218-235.
  • Handle: RePEc:eee:energy:v:164:y:2018:i:c:p:218-235
    DOI: 10.1016/j.energy.2018.08.202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, George & Pisa, Javier, 1994. "Exergoeconomic evaluation and optimization of energy systems — application to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 287-321.
    2. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    3. Baghsheikhi, Mostafa & Sayyaadi, Hoseyn, 2016. "Real-time exergoeconomic optimization of a steam power plant using a soft computing-fuzzy inference system," Energy, Elsevier, vol. 114(C), pages 868-884.
    4. Sayyaadi, Hoseyn & Babaie, Meisam & Farmani, Mohammad Reza, 2011. "Implementing of the multi-objective particle swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and environmental optimization of a benchmark cogeneration system," Energy, Elsevier, vol. 36(8), pages 4777-4789.
    5. Sayyaadi, Hoseyn & Sabzaligol, Tooraj, 2009. "Various approaches in optimization of a typical pressurized water reactor power plant," Applied Energy, Elsevier, vol. 86(7-8), pages 1301-1310, July.
    6. Frangopoulos, Christos A., 1994. "Application of the thermoeconomic functional approach to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 323-342.
    7. Valero, A. & Lozano, M.A. & Serra, L. & Torres, C., 1994. "Application of the exergetic cost theory to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 365-381.
    8. von Spakovsky, Michael R., 1994. "Application of engineering functional analysis to the analysis and optimization of the CGAM problem," Energy, Elsevier, vol. 19(3), pages 343-364.
    9. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.
    10. Ansari, Kambiz & Sayyaadi, Hoseyn & Amidpour, Majid, 2010. "Thermoeconomic optimization of a hybrid pressurized water reactor (PWR) power plant coupled to a multi effect distillation desalination system with thermo-vapor compressor (MED-TVC)," Energy, Elsevier, vol. 35(5), pages 1981-1996.
    11. Lazzaretto, A. & Toffolo, A., 2004. "Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design," Energy, Elsevier, vol. 29(8), pages 1139-1157.
    12. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.
    13. Sayyaadi, Hoseyn, 2009. "Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system," Applied Energy, Elsevier, vol. 86(6), pages 867-879, June.
    14. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2019. "Retrofit of a steam power plant using the adaptive neuro-fuzzy inference system in response to the load variation," Energy, Elsevier, vol. 175(C), pages 1164-1173.
    2. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2021. "Sustainable advanced distribution management system design considering differential pricing schemes and carbon emissions," Energy, Elsevier, vol. 219(C).
    3. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sayyaadi, Hoseyn & Baghsheikhi, Mostafa, 2019. "Retrofit of a steam power plant using the adaptive neuro-fuzzy inference system in response to the load variation," Energy, Elsevier, vol. 175(C), pages 1164-1173.
    2. Sayyaadi, Hoseyn & Babaie, Meisam & Farmani, Mohammad Reza, 2011. "Implementing of the multi-objective particle swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and environmental optimization of a benchmark cogeneration system," Energy, Elsevier, vol. 36(8), pages 4777-4789.
    3. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    4. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    5. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    6. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    7. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    8. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    9. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    10. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    11. Lamas, Wendell de Queiróz, 2017. "Exergo-economic analysis of a typical wind power system," Energy, Elsevier, vol. 140(P1), pages 1173-1181.
    12. Kler, Aleksandr M. & Potanina, Yulia M. & Marinchenko, Andrey Y., 2020. "Co-optimization of thermal power plant flowchart, thermodynamic cycle parameters, and design parameters of components," Energy, Elsevier, vol. 193(C).
    13. Rosseto de Faria, Pedro & Aiolfi Barone, Marcelo & Guedes dos Santos, Rodrigo & Santos, José Joaquim C.S., 2023. "The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Sayyaadi, Hoseyn, 2009. "Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system," Applied Energy, Elsevier, vol. 86(6), pages 867-879, June.
    15. Mazur, V., 2009. "Fuzzy thermoeconomic optimization of energy-transforming systems," Applied Energy, Elsevier, vol. 84(7-8), pages 749-762, July.
    16. Li, Hongtao & Marechal, Francois & Favrat, Daniel, 2010. "Power and cogeneration technology environomic performance typification in the context of CO2 abatement part I: Power generation," Energy, Elsevier, vol. 35(8), pages 3143-3154.
    17. Piacentino, Antonio & Cardona, Ennio, 2010. "Scope Oriented Thermoeconomic analysis of energy systems. Part II: Formation Structure of Optimality for robust design," Applied Energy, Elsevier, vol. 87(3), pages 957-970, March.
    18. Sahu, Mithilesh Kumar & Sanjay,, 2016. "Investigation of the effect of air film blade cooling on thermoeconomics of gas turbine based power plant cycle," Energy, Elsevier, vol. 115(P1), pages 1320-1330.
    19. Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
    20. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:218-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.