IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp21-31.html
   My bibliography  Save this article

Energy saving technique and measurement in green wireless communication

Author

Listed:
  • Dahal, Madhu Sudan
  • Shrestha, Jagan Nath
  • Shakya, Shree Raj

Abstract

Due to the increasing demand of wireless communication, the number of radio base stations has been growing excessively. The wireless network is designed for maximum traffic load, but the traffic load is unevenly distributed resulting in wastage of energy consumption most of the time during low traffic. Traditional energy saving techniques like switching off certain BSs completely during low traffic, creates problems in restoring to optimum capacity when traffic increases. There is the potential of saving energy consumption along with maintaining the quality of service and resulting environmental impact by introducing dynamic transmitter shutdown technique.

Suggested Citation

  • Dahal, Madhu Sudan & Shrestha, Jagan Nath & Shakya, Shree Raj, 2018. "Energy saving technique and measurement in green wireless communication," Energy, Elsevier, vol. 159(C), pages 21-31.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:21-31
    DOI: 10.1016/j.energy.2018.06.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnuolo, Antonio & Petraglia, Antonio & Vetromile, Carmela & Formosi, Roberto & Lubritto, Carmine, 2015. "Monitoring and optimization of energy consumption of base transceiver stations," Energy, Elsevier, vol. 81(C), pages 286-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Bo & Zhang, Weixiang & Hu, Pinduan & Sun, Jing & Gong, Dunwei, 2023. "Synergetic renewable generation allocation and 5G base station placement for decarbonizing development of power distribution system: A multi-objective interval evolutionary optimization approach," Applied Energy, Elsevier, vol. 351(C).
    2. Sun, Mingyi & Zhao, Xia & Tan, Hong & Li, Xinyi, 2022. "Coordinated operation of the integrated electricity-water distribution system and water-cooled 5G base stations," Energy, Elsevier, vol. 238(PC).
    3. Shornalatha Euttamarajah & Yin Hoe Ng & Chee Keong Tan, 2021. "Energy-Efficient Joint Base Station Switching and Power Allocation for Smart Grid Based Hybrid-Powered CoMP-Enabled HetNet," Future Internet, MDPI, vol. 13(8), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuewei & Wang, Jing & Wang, Lin & Yuan, Ruiming, 2019. "Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    3. Wang, Xinlin & Ahn, Sung-Hoon, 2020. "Real-time prediction and anomaly detection of electrical load in a residential community," Applied Energy, Elsevier, vol. 259(C).
    4. Faruk, Nasir & Ruttik, Kalle & Mutafungwa, Edward & Jäntti, Riku, 2016. "Energy savings through self-backhauling for future heterogeneous networks," Energy, Elsevier, vol. 115(P1), pages 711-721.
    5. Palomba, Valeria & Ferraro, Marco & Frazzica, Andrea & Vasta, Salvatore & Sergi, Francesco & Antonucci, Vincenzo, 2018. "Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications," Applied Energy, Elsevier, vol. 216(C), pages 620-633.
    6. Petraglia, Antonio & Spagnuolo, Antonio & Vetromile, Carmela & D'Onofrio, Antonio & Lubritto, Carmine, 2015. "Heat flows and energetic behavior of a telecommunication radio base station," Energy, Elsevier, vol. 89(C), pages 75-83.
    7. Zhang, Sheng & Cheng, Yong & Oladokun, Majeed Olaide & Huan, Chao & Lin, Zhang, 2019. "Heat removal efficiency of stratum ventilation for air-side modulation," Applied Energy, Elsevier, vol. 238(C), pages 1237-1249.
    8. Velmurugan, Manivannan Senthil, 2017. "Sustainable perspectives on energy consumption, EMRF, environment, health and accident risks associated with the use of mobile phones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 192-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:21-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.