IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v157y2018icp718-733.html
   My bibliography  Save this article

Experimental investigation and theoretical analysis of oil circulation rates in ejector cooling cycles

Author

Listed:
  • Zhu, Jingwei
  • Botticella, Francesco
  • Elbel, Stefan

Abstract

In this study, the influence of compressor speed, ejector motive nozzle needle position and evaporator inlet metering valve opening on the oil circulation rates (OCRs) of an R744 transcritical standard ejector cycle was experimentally investigated. Significantly higher OCR (∼10%) was observed at the evaporator inlet of the ejector cycle than that at the high pressure side (∼1%) measured in the same cycle under the same conditions. It has been observed that evaporator OCR was increased with increasing compressor speed. When the motive nozzle needle moved towards the nozzle throat, both compressor discharge flow rate and evaporator OCR were observed to be significantly lowered. As the evaporator inlet metering valve opening was adjusted, the compressor mass flow rate did not vary significantly while the evaporator mass flow rate decreased with decreasing metering valve opening. The evaporator OCR decreased from 6.5% to 2.2% as the metering valve opening varied from 86% to 27%. High evaporator OCR results in large evaporator pressure drop and low heat transfer coefficient. In addition to the standard ejector cycle, several alternative ejector cycles were theoretically analyzed to see if there is similar problem of high OCR in the evaporator. In ejector liquid recirculation cycle and multi-stage multi-ejector supermarket refrigeration cycle, similar high OCR problem in the evaporator may exist, while in two evaporator ejector cycle, evaporator OCR is equal to compressor OCR at steady state.

Suggested Citation

  • Zhu, Jingwei & Botticella, Francesco & Elbel, Stefan, 2018. "Experimental investigation and theoretical analysis of oil circulation rates in ejector cooling cycles," Energy, Elsevier, vol. 157(C), pages 718-733.
  • Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:718-733
    DOI: 10.1016/j.energy.2018.05.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    3. Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yafei & Deng, Jianqiang, 2022. "Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model," Energy, Elsevier, vol. 238(PC).
    2. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    2. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    3. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    4. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    5. Hu, Bin & Wu, Di & Wang, R.Z., 2018. "Water vapor compression and its various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 92-107.
    6. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    7. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    8. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    9. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    10. Khosravi, A. & Laukkanen, T. & Vuorinen, V. & Syri, S., 2021. "Waste heat recovery from a data centre and 5G smart poles for low-temperature district heating network," Energy, Elsevier, vol. 218(C).
    11. Liu, Bo & Guo, Xiangji & Xi, Xiuzhi & Sun, Jianhua & Zhang, Bo & Yang, Zhuqiang, 2023. "Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture," Energy, Elsevier, vol. 263(PD).
    12. Wang, Xiao & Yu, Jianlin & Zhou, Mengliu & Lv, Xiaolong, 2014. "Comparative studies of ejector-expansion vapor compression refrigeration cycles for applications in domestic refrigerator-freezers," Energy, Elsevier, vol. 70(C), pages 635-642.
    13. Haghparast, Payam & Sorin, Mikhail V. & Nesreddine, Hakim, 2018. "The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle," Energy, Elsevier, vol. 162(C), pages 728-743.
    14. Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
    15. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    16. Megdouli, K. & Ejemni, N. & Nahdi, E. & Mhimid, A. & Kairouani, L., 2017. "Thermodynamic analysis of a novel ejector expansion transcritical CO2/N2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures," Energy, Elsevier, vol. 128(C), pages 586-600.
    17. Yang, Mina & Jung, Chung Woo & Kang, Yong Tae, 2015. "Development of high efficiency cycles for domestic refrigerator-freezer application," Energy, Elsevier, vol. 93(P2), pages 2258-2266.
    18. Wang, Xiao & Yu, Jianlin, 2015. "An experimental investigation on a novel ejector enhanced refrigeration cycle applied in the domestic refrigerator-freezer," Energy, Elsevier, vol. 93(P1), pages 202-209.
    19. Liu, Ye & Yu, Jianlin, 2018. "Performance analysis of an advanced ejector-expansion autocascade refrigeration cycle," Energy, Elsevier, vol. 165(PB), pages 859-867.
    20. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:718-733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.