IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v144y2020ics0301421520303864.html
   My bibliography  Save this article

The effect path of public communication on public acceptance of nuclear energy

Author

Listed:
  • Qi, Wen-Hui
  • Qi, Ming-Liang
  • Ji, Ya-Min

Abstract

Nuclear power plants in operation usually take public communication measures to increase the public acceptance of nuclear energy. This study explores how public communication affects public acceptance. The data were obtained through questionnaire surveys (N = 364) of residents living around the Qinshan, Tianwan, and Hongyanhe nuclear power plants in China. Based on the researches of mass communication effect path, a structural equation model showed that public communication cannot affect public acceptance directly, but can indirectly affect public acceptance through three paths. In the first path, public communication positively affects trust, trust positively affects perceived benefit, and perceived benefit positively affects public acceptance. In the second path, public communication positively affects trust, trust negatively affects perceived risk, and perceived risk negatively affects public acceptance. In the third path, public communication positively affects perceived benefit, and perceived benefit positively affects public acceptance. Furthermore, public communication has a positive effect on knowledge, but has no effect on public risk. This study also showed that knowledge cannot affect perceived risk and perceived benefit. We proposed policy suggestions based on the results.

Suggested Citation

  • Qi, Wen-Hui & Qi, Ming-Liang & Ji, Ya-Min, 2020. "The effect path of public communication on public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303864
    DOI: 10.1016/j.enpol.2020.111655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520303864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chuanwang & Zhu, Xiting, 2014. "Evaluating the public perceptions of nuclear power in China: Evidence from a contingent valuation survey," Energy Policy, Elsevier, vol. 69(C), pages 397-405.
    2. He, Guizhen & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Public participation and trust in nuclear power development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 1-11.
    3. McComas, Katherine A. & Lu, Hang & Keranen, Katie M. & Furtney, Maria A. & Song, Hwansuck, 2016. "Public perceptions and acceptance of induced earthquakes related to energy development," Energy Policy, Elsevier, vol. 99(C), pages 27-32.
    4. Mah, Daphne Ngar-yin & Hills, Peter & Tao, Julia, 2014. "Risk perception, trust and public engagement in nuclear decision-making in Hong Kong," Energy Policy, Elsevier, vol. 73(C), pages 368-390.
    5. Michael Siegrist & George Cvetkovich, 2000. "Perception of Hazards: The Role of Social Trust and Knowledge," Risk Analysis, John Wiley & Sons, vol. 20(5), pages 713-720, October.
    6. Lennart Sjöberg, 2001. "Limits of Knowledge and the Limited Importance of Trust," Risk Analysis, John Wiley & Sons, vol. 21(1), pages 189-198, February.
    7. Zhu, Weiwei & Wei, Jiuchang & Zhao, Dingtao, 2016. "Anti-nuclear behavioral intentions: The role of perceived knowledge, information processing, and risk perception," Energy Policy, Elsevier, vol. 88(C), pages 168-177.
    8. Guizhen He & Arthur P.J. Mol & Lei Zhang & Yonglong Lu, 2014. "Nuclear power in China after Fukushima: understanding public knowledge, attitudes, and trust," Journal of Risk Research, Taylor & Francis Journals, vol. 17(4), pages 435-451, April.
    9. Zhang, Xiang & Xu, Jian-gang & Ju, Yang, 2018. "Public participation in NIMBY risk mitigation: A discourse zoning approach in the Chinese context," Land Use Policy, Elsevier, vol. 77(C), pages 559-575.
    10. Vivianne H. M. Visschers & Michael Siegrist, 2013. "How a Nuclear Power Plant Accident Influences Acceptance of Nuclear Power: Results of a Longitudinal Study Before and After the Fukushima Disaster," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 333-347, February.
    11. Xia, Dongqin & Li, Yazhou & He, Yanling & Zhang, Tingting & Wang, Yongliang & Gu, Jibao, 2019. "Exploring the role of cultural individualism and collectivism on public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 132(C), pages 208-215.
    12. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2019. "Public perceptions and acceptance of nuclear energy in China: The role of public knowledge, perceived benefit, perceived risk and public engagement," Energy Policy, Elsevier, vol. 126(C), pages 352-360.
    13. Guo, Yue & Ru, Peng & Su, Jun & Anadon, Laura Diaz, 2015. "Not in my backyard, but not far away from me: Local acceptance of wind power in China," Energy, Elsevier, vol. 82(C), pages 722-733.
    14. Guo, Yue & Ren, Tao, 2017. "When it is unfamiliar to me: Local acceptance of planned nuclear power plants in China in the post-fukushima era," Energy Policy, Elsevier, vol. 100(C), pages 113-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Liu, Bingsheng & Xu, Yinghua & Yang, Yang & Lu, Shijian, 2021. "How public cognition influences public acceptance of CCUS in China: Based on the ABC (affect, behavior, and cognition) model of attitudes," Energy Policy, Elsevier, vol. 156(C).
    3. Pawel Robert Smolinski & Joseph Januszewicz & Barbara Pawlowska & Jacek Winiarski, 2023. "Nuclear Energy Acceptance in Poland: From Societal Attitudes to Effective Policy Strategies -- Network Modeling Approach," Papers 2309.14869, arXiv.org.
    4. Jia, Ling & Qian, Queena K. & Meijer, Frits & Visscher, Henk, 2021. "How information stimulates homeowners’ cooperation in residential building energy retrofits in China," Energy Policy, Elsevier, vol. 157(C).
    5. Hu, Xiaoli & Zhu, Weiwei & Wei, Jiuchang, 2021. "Effects of information strategies on public acceptance of nuclear energy," Energy, Elsevier, vol. 231(C).
    6. Aleksandra Badora & Krzysztof Kud & Marian Woźniak, 2021. "Nuclear Energy Perception and Ecological Attitudes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    7. Jie Yang & Jie Wang & Xiaofeng Zhang & Chunqi Shen & Zhijuan Shao, 2022. "How Social Impressions Affect Public Acceptance of Nuclear Energy: A Case Study in China," Sustainability, MDPI, vol. 14(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fan & Gu, Jibao & Wu, Jianlin, 2020. "Perspective taking, energy policy involvement, and public acceptance of nuclear energy: Evidence from China," Energy Policy, Elsevier, vol. 145(C).
    2. Wang, Yu & Gu, Jibao & Wu, Jianlin, 2020. "Explaining local residents’ acceptance of rebuilding nuclear power plants: The roles of perceived general benefit and perceived local benefit," Energy Policy, Elsevier, vol. 140(C).
    3. Wang, Jing & Li, Yazhou & Wu, Jianlin & Gu, Jibao & Xu, Shuo, 2020. "Environmental beliefs and public acceptance of nuclear energy in China: A moderated mediation analysis," Energy Policy, Elsevier, vol. 137(C).
    4. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2020. "How and when does information publicity affect public acceptance of nuclear energy?," Energy, Elsevier, vol. 198(C).
    5. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2019. "Public perceptions and acceptance of nuclear energy in China: The role of public knowledge, perceived benefit, perceived risk and public engagement," Energy Policy, Elsevier, vol. 126(C), pages 352-360.
    6. Vladimir M. Cvetković & Adem Öcal & Yuliya Lyamzina & Eric K. Noji & Neda Nikolić & Goran Milošević, 2021. "Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation vs. Social Benefits," Energies, MDPI, vol. 14(9), pages 1-19, April.
    7. Xia, Dongqin & Li, Yazhou & He, Yanling & Zhang, Tingting & Wang, Yongliang & Gu, Jibao, 2019. "Exploring the role of cultural individualism and collectivism on public acceptance of nuclear energy," Energy Policy, Elsevier, vol. 132(C), pages 208-215.
    8. Han, Y. & Lam, J. & Guo, P. & Gou, Z., 2019. "What Predicts Government Trustworthiness in Cross-border HK-Guangdong Nuclear Safety Emergency Governance?," Cambridge Working Papers in Economics 1989, Faculty of Economics, University of Cambridge.
    9. Adrian Tantau & Greta Marilena Puscasu & Silvia Elena Cristache & Cristina Alpopi & Laurentiu Fratila & Daniel Moise & Georgeta Narcisa Ciobotar, 2022. "A Deep Understanding of Romanian Attitude and Perception Regarding Nuclear Energy as Green Investment Promoted by the European Green Deal," Energies, MDPI, vol. 16(1), pages 1-14, December.
    10. Zhou, Lingyi & Dai, Yixin, 2020. "Which is more effective in China? How communication tools influence public acceptance of nuclear power energy," Energy Policy, Elsevier, vol. 147(C).
    11. Jing Zeng & Jiuchang Wei & Dingtao Zhao & Weiwei Zhu & Jibao Gu, 2017. "Information-seeking intentions of residents regarding the risks of nuclear power plant: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 739-755, June.
    12. Xu, Min & Liu, Yong & Cui, Caiyun & Xia, Bo & Ke, Yongjian & Skitmore, Martin, 2023. "Social acceptance of NIMBY facilities: A comparative study between public acceptance and the social license to operate analytical frameworks," Land Use Policy, Elsevier, vol. 124(C).
    13. Guo, Yue & Ren, Tao, 2017. "When it is unfamiliar to me: Local acceptance of planned nuclear power plants in China in the post-fukushima era," Energy Policy, Elsevier, vol. 100(C), pages 113-125.
    14. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
    15. Jie Yang & Jie Wang & Xiaofeng Zhang & Chunqi Shen & Zhijuan Shao, 2022. "How Social Impressions Affect Public Acceptance of Nuclear Energy: A Case Study in China," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    16. Ho, Shirley S. & Xiong, Rui & Chuah, Agnes S.F., 2021. "Heuristic cues as perceptual filters: Factors influencing public support for nuclear research reactor in Singapore," Energy Policy, Elsevier, vol. 150(C).
    17. Uji, Azusa & Prakash, Aseem & Song, Jaehyun, 2021. "Does the “NIMBY syndrome” undermine public support for nuclear power in Japan?," Energy Policy, Elsevier, vol. 148(PA).
    18. Lam, J. & Li, V. & Reiner, D. & Han, Y., 2018. "Trust in Government and Effective Nuclear Safety Governance in Great Britain," Cambridge Working Papers in Economics 1827, Faculty of Economics, University of Cambridge.
    19. Ho, Shirley S. & Oshita, Tsuyoshi & Looi, Jiemin & Leong, Alisius D. & Chuah, Agnes S.F., 2019. "Exploring public perceptions of benefits and risks, trust, and acceptance of nuclear energy in Thailand and Vietnam: A qualitative approach," Energy Policy, Elsevier, vol. 127(C), pages 259-268.
    20. Yu, Sha & Yarlagadda, Brinda & Siegel, Jonas Elliott & Zhou, Sheng & Kim, Sonny, 2020. "The role of nuclear in China's energy future: Insights from integrated assessment," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.