IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v309y2023i2p819-831.html
   My bibliography  Save this article

Predicting the outbreak of epidemics using a network-based approach

Author

Listed:
  • Das, Saikat
  • Bose, Indranil
  • Sarkar, Uttam Kumar

Abstract

The spread of epidemics is a common societal problem across the world. Can operational research be used to predict such outbreaks? While equation-based approaches are used to model the trajectory of epidemics, can a network-based approach also be used? This paper presents an innovative application of epidemic modelling through the design of both approaches and compares between the two. The network-based approach proposed in this paper allows implementing heterogeneity at the level of individuals and incorporates flexibility in the variety of situations the model can be applied to. In contrast to the equation-based approach, the network-based approach can address the role of individual differences, network properties, and patterns of social contacts responsible for the spread of epidemics but are much more complex to implement. In this paper, we simulated the spread of infection at the beginning of Covid-19 (Coronavirus disease 2019) using both approaches. The results are showcased using empirical data for eight countries. Sophisticated measures, including partial curve mapping, are used to compare the simulated results with the actual number of infections. We find that the plots generated by the network-based approach match the empirical data better than the equation-based approach. While both approaches can be used to predict the spread of infections, we conclusively show that the proposed network-based approach is better suited with its ability to model the spread of epidemics at the level of an individual. Hence, this can be a model of choice for epidemiologists who are interested to model the spread of an epidemic.

Suggested Citation

  • Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
  • Handle: RePEc:eee:ejores:v:309:y:2023:i:2:p:819-831
    DOI: 10.1016/j.ejor.2023.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723000401
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
    2. Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
    3. Brailsford, Sally C. & Eldabi, Tillal & Kunc, Martin & Mustafee, Navonil & Osorio, Andres F., 2019. "Hybrid simulation modelling in operational research: A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 278(3), pages 721-737.
    4. J Mingers, 2007. "Operational research: the science of better?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(5), pages 683-686, May.
    5. Chang, Sheryl L. & Piraveenan, Mahendra & Prokopenko, Mikhail, 2020. "Impact of network assortativity on epidemic and vaccination behaviour," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Gupta, Aparna & Wang, Runzu & Lu, Yueliang, 2021. "Addressing systemic risk using contingent convertible debt – A network analysis," European Journal of Operational Research, Elsevier, vol. 290(1), pages 263-277.
    7. Chang, Joseph T. & Kaplan, Edward H., 2023. "Modeling local coronavirus outbreaks," European Journal of Operational Research, Elsevier, vol. 304(1), pages 57-68.
    8. Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
    9. Luca Fumagalli & Adalberto Polenghi & Elisa Negri & Irene Roda, 2019. "Framework for simulation software selection," Journal of Simulation, Taylor & Francis Journals, vol. 13(4), pages 286-303, October.
    10. Dong, Xuefan & Liu, Yijung & Wu, Chao & Lian, Ying, 2019. "The topology of scale-free networks with an S-shaped nonlinear growth characteristic," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 137-148.
    11. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    12. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2021. "Effectiveness of Intervention Strategies on MERS-CoV Transmission Dynamics in South Korea, 2015: Simulations on the Network Based on the Real-World Contact Data," IJERPH, MDPI, vol. 18(7), pages 1-11, March.
    13. Basnarkov, Lasko, 2021. "SEAIR Epidemic spreading model of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    15. Ma, Tieju & Nakamori, Yoshiteru, 2005. "Agent-based modeling on technological innovation as an evolutionary process," European Journal of Operational Research, Elsevier, vol. 166(3), pages 741-755, November.
    16. Du, Mu & Sai, Aditya & Kong, Nan, 2021. "A data-driven optimization approach for multi-period resource allocation in cholera outbreak control," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1106-1116.
    17. Yaesoubi, Reza & Cohen, Ted, 2011. "Generalized Markov models of infectious disease spread: A novel framework for developing dynamic health policies," European Journal of Operational Research, Elsevier, vol. 215(3), pages 679-687, December.
    18. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    19. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    20. Hend Alrasheed & Alhanoof Althnian & Heba Kurdi & Heila Al-Mgren & Sulaiman Alharbi, 2020. "COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    21. Jorritsma, Joost & Hulshof, Tim & Komjáthy, Júlia, 2020. "Not all interventions are equal for the height of the second peak," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    22. Elizabeth Hunter & Brian Mac Namee & John Kelleher, 2020. "A Hybrid Agent-Based and Equation Based Model for the Spread of Infectious Diseases," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(4), pages 1-14.
    23. Silal, Sheetal Prakash, 2021. "Operational research: A multidisciplinary approach for the management of infectious disease in a global context," European Journal of Operational Research, Elsevier, vol. 291(3), pages 929-934.
    24. Pazoki, Mostafa & Samarghandi, Hamed, 2021. "Word-Of-Mouth and estimating demand based on network structure and epidemic models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 323-334.
    25. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.
    2. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. Arben Asllani & Silvana Trimi, 2022. "COVID-19 vaccine distribution: exploring strategic alternatives for the greater good," Service Business, Springer;Pan-Pacific Business Association, vol. 16(3), pages 601-619, September.
    4. Camacho, Carmen & Vasilakis, Chrysovalantis, 2023. "Transmissible Diseases, Vaccination and Inequality," IZA Discussion Papers 16504, Institute of Labor Economics (IZA).
    5. Huberts, Nick F.D. & Thijssen, Jacco J.J., 2023. "Optimal timing of non-pharmaceutical interventions during an epidemic," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1366-1389.
    6. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Francisco Tarcísio Alves Júnior & Mariá Cristina Vasconcelos Nascimento, 2021. "On Comparing Cross-Validated Forecasting Models with a Novel Fuzzy-TOPSIS Metric: A COVID-19 Case Study," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    7. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Timo Kuosmanen & Yong Tan & Sheng Dai, 2023. "Performance analysis of English hospitals during the first and second waves of the coronavirus pandemic," Health Care Management Science, Springer, vol. 26(3), pages 447-460, September.
    9. Roberto Aringhieri & Patrick Hirsch & Marion S. Rauner & Melanie Reuter-Oppermanns & Margit Sommersguter-Reichmann, 2022. "Central European journal of operations research (CJOR) “operations research applied to health services (ORAHS) in Europe: general trends and ORAHS 2020 conference in Vienna, Austria”," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 1-18, March.
    10. Elif Bozkaya & Levent Eriskin & Mumtaz Karatas, 2023. "Data analytics during pandemics: a transportation and location planning perspective," Annals of Operations Research, Springer, vol. 328(1), pages 193-244, September.
    11. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    12. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
    13. Mohamed Abdelkader Souissi & Achraf Ammar & Omar Trabelsi & Jordan M. Glenn & Omar Boukhris & Khaled Trabelsi & Bassem Bouaziz & Piotr Zmijewski & Hichem Souissi & Anis Ben Chikha & Tarak Driss & Hamd, 2021. "Distance Motor Learning during the COVID-19 Induced Confinement: Video Feedback with a Pedagogical Activity Improves the Snatch Technique in Young Athletes," IJERPH, MDPI, vol. 18(6), pages 1-13, March.
    14. Hannah Carver & Tracey Price & Danilo Falzon & Peter McCulloch & Tessa Parkes, 2022. "Stress and Wellbeing during the COVID-19 Pandemic: A Mixed-Methods Exploration of Frontline Homelessness Services Staff Experiences in Scotland," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    15. Xingwei Li & Jingru Li & Yicheng Huang & Jinrong He & Xiang Liu & Jiachi Dai & Qiong Shen, 2022. "Construction enterprises’ adoption of green development behaviors: an agent-based modeling approach," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    16. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    17. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    18. Yekaterina Chzhen & Jennifer Symonds & Dympna Devine & Júlia Mikolai & Susan Harkness & Seaneen Sloan & Gabriela Martinez Sainz, 2022. "Learning in a Pandemic: Primary School children’s Emotional Engagement with Remote Schooling during the spring 2020 Covid-19 Lockdown in Ireland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 15(4), pages 1517-1538, August.
    19. Mirko Licchetta & Giovanni Mattozzi & Rafal Raciborski & Rupert Willis, 2022. "Economic Adjustment in the Euro Area and the United States during the COVID-19 Crisis," European Economy - Discussion Papers 160, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    20. Lucia Freira & Marco Sartorio & Cynthia Boruchowicz & Florencia Lopez Boo & Joaquin Navajas, 2021. "The interplay between partisanship, forecasted COVID-19 deaths, and support for preventive policies," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:309:y:2023:i:2:p:819-831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.