IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i3p1273-1291.html
   My bibliography  Save this article

Structural models for fog computing based internet of things architectures with insurance and risk management applications

Author

Listed:
  • Zhang, Xiaoyu
  • Xu, Maochao
  • Su, Jianxi
  • Zhao, Peng

Abstract

Cybersecurity risk modeling and pricing are becoming a spotlight in actuarial science and operational research. This paper pertains to the analysis of the cybersecurity risks involved in the fog computing technology which has been intensively deployed in assorted Internet of Things (IoT) applications. To this end, a class of structural models are established to study the inherent cyber risk propagation process. Under the smart home applications, we manage to compute the compromise probabilities of individual nodes explicitly. Applications of the proposed structural models in the context of cyber insurance pricing are thoroughly explored. Finally, we propose an interval method for estimating the compromise probabilities of fog network’s elements, which can be used to efficiently identify weak nodes for cybersecurity risk management.

Suggested Citation

  • Zhang, Xiaoyu & Xu, Maochao & Su, Jianxi & Zhao, Peng, 2023. "Structural models for fog computing based internet of things architectures with insurance and risk management applications," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1273-1291.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1273-1291
    DOI: 10.1016/j.ejor.2022.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722005872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khouzani, MHR. & Liu, Zhengliang & Malacaria, Pasquale, 2019. "Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 894-903.
    2. Fahrenwaldt, Matthias A. & Weber, Stefan & Weske, Kerstin, 2018. "Pricing Of Cyber Insurance Contracts In A Network Model," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 1175-1218, September.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    4. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    5. Eling, Martin & Wirfs, Jan, 2019. "What are the actual costs of cyber risk events?," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1109-1119.
    6. Arianna Agosto & Daniel Felix Ahelegbey, 2022. "Default count-based network models for credit contagion," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 139-152, January.
    7. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    8. Paul, Jomon A. & Zhang, Minjiao, 2021. "Decision support model for cybersecurity risk planning: A two-stage stochastic programming framework featuring firms, government, and attacker," European Journal of Operational Research, Elsevier, vol. 291(1), pages 349-364.
    9. Cheung, Kam-Fung & Bell, Michael G.H., 2021. "Attacker–defender model against quantal response adversaries for cyber security in logistics management: An introductory study," European Journal of Operational Research, Elsevier, vol. 291(2), pages 471-481.
    10. Maochao Xu & Lei Hua, 2019. "Cybersecurity Insurance: Modeling and Pricing," North American Actuarial Journal, Taylor & Francis Journals, vol. 23(2), pages 220-249, April.
    11. Shlomo Yitzhaki, 2003. "Gini’s Mean difference: a superior measure of variability for non-normal distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 285-316.
    12. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    13. Christian Biener & Martin Eling & Jan Hendrik Wirfs, 2015. "Insurability of Cyber Risk: An Empirical Analysis†," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 40(1), pages 131-158, January.
    14. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    15. Shaked, Moshe, 1982. "A general theory of some positive dependence notions," Journal of Multivariate Analysis, Elsevier, vol. 12(2), pages 199-218, June.
    16. Nagurney, Anna & Shukla, Shivani, 2017. "Multifirm models of cybersecurity investment competition vs. cooperation and network vulnerability," European Journal of Operational Research, Elsevier, vol. 260(2), pages 588-600.
    17. Furman, Edward & Kye, Yisub & Su, Jianxi, 2019. "Computing the Gini index: A note," Economics Letters, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da, Gaofeng & Xu, Maochao & Zhao, Peng, 2021. "Multivariate dependence among cyber risks based on L-hop propagation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 525-546.
    2. Suyuan Luo & Tsan‐Ming Choi, 2022. "E‐commerce supply chains with considerations of cyber‐security: Should governments play a role?," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2107-2126, May.
    3. Dacorogna, Michel & Debbabi, Nehla & Kratz, Marie, 2023. "Building up cyber resilience by better grasping cyber risk via a new algorithm for modelling heavy-tailed data," European Journal of Operational Research, Elsevier, vol. 311(2), pages 708-729.
    4. Ma, Boyuan & Chu, Tingjin & Jin, Zhuo, 2022. "Frequency and severity estimation of cyber attacks using spatial clustering analysis," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 33-45.
    5. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.
    6. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    7. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    8. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    9. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    10. Wang, Ruodu & Zitikis, Ričardas, 2020. "Weak comonotonicity," European Journal of Operational Research, Elsevier, vol. 282(1), pages 386-397.
    11. Barczy, Mátyás & K. Nedényi, Fanni & Sütő, László, 2023. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 107-128.
    12. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    13. Yuyu Chen & Liyuan Lin & Ruodu Wang, 2021. "Risk Aggregation under Dependence Uncertainty and an Order Constraint," Papers 2104.07718, arXiv.org, revised Oct 2021.
    14. Matyas Barczy & Fanni K. Ned'enyi & L'aszl'o SutH{o}, 2022. "Probability equivalent level of Value at Risk and higher-order Expected Shortfalls," Papers 2202.09770, arXiv.org, revised Nov 2022.
    15. Chen, Yuyu & Lin, Liyuan & Wang, Ruodu, 2022. "Risk aggregation under dependence uncertainty and an order constraint," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 169-187.
    16. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    17. Chen, Ouxiang & Hu, Taizhong, 2019. "Extreme-aggregation measures in the RDEU model," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 155-163.
    18. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    19. Zheng, Yanting & Yang, Jingping & Huang, Jianhua Z., 2011. "Approximation of bivariate copulas by patched bivariate Fréchet copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 246-256, March.
    20. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:3:p:1273-1291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.