IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i3p1087-1098.html
   My bibliography  Save this article

An inverse optimization approach for a capacitated vehicle routing problem

Author

Listed:
  • Chen, Lu
  • Chen, Yuyi
  • Langevin, André

Abstract

The capacitated vehicle routing problem studied in this paper stems from an e-commerce company in China. Efficient delivery is crucial for the logistic service of the company. It was observed that experienced drivers (experts) planned better delivery routes than those from optimization tools. This is largely due to the fact that the objectives (or the cost matrices) in real life are highly complicated and the experts use more practical objectives while making decisions. In this paper, we propose an inverse optimization formulation to derive a proper cost matrix by learning from the experts experience. Thus, the routing model with respect to the learned cost matrix could provide solutions as good as those given by experts. A multiplicative weights updates algorithm is applied to achieve a fast and convergent learning process. Experimental analyses based on randomly generated instances and real-world instances demonstrate the effectiveness of the approach.

Suggested Citation

  • Chen, Lu & Chen, Yuyi & Langevin, André, 2021. "An inverse optimization approach for a capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1087-1098.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:3:p:1087-1098
    DOI: 10.1016/j.ejor.2021.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721002575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ron Dembo & Dan Rosen, 1999. "The practice of portfolio replication. A practical overview of forward and inverse problems," Annals of Operations Research, Springer, vol. 85(0), pages 267-284, January.
    2. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    3. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    4. Day, Jamison M. & Daniel Wright, P. & Schoenherr, Tobias & Venkataramanan, Munirpallam & Gaudette, Kevin, 2009. "Improving routing and scheduling decisions at a distributor of industrial gasses," Omega, Elsevier, vol. 37(1), pages 227-237, February.
    5. Haughton, Michael A., 2008. "The efficacy of exclusive territory assignments to delivery vehicle drivers," European Journal of Operational Research, Elsevier, vol. 184(1), pages 24-38, January.
    6. Susan Jia Xu & Mehdi Nourinejad & Xuebo Lai & Joseph Y. J. Chow, 2018. "Network Learning via Multiagent Inverse Transportation Problems," Service Science, INFORMS, vol. 52(6), pages 1347-1364, December.
    7. Jianzhong Zhang & Zhongfan Ma, 1999. "Solution Structure of Some Inverse Combinatorial Optimization Problems," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 127-139, July.
    8. Jianzhong Zhang & Zhenhong Liu, 2002. "A General Model of Some Inverse Combinatorial Optimization Problems and Its Solution Method Under l ∞ Norm," Journal of Combinatorial Optimization, Springer, vol. 6(2), pages 207-227, June.
    9. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    10. Karen Smilowitz & Maciek Nowak & Tingting Jiang, 2013. "Workforce Management in Periodic Delivery Operations," Transportation Science, INFORMS, vol. 47(2), pages 214-230, May.
    11. Damian R. Beil & Lawrence M. Wein, 2003. "An Inverse-Optimization-Based Auction Mechanism to Support a Multiattribute RFQ Process," Management Science, INFORMS, vol. 49(11), pages 1529-1545, November.
    12. Scott Carr & William Lovejoy, 2000. "The Inverse Newsvendor Problem: Choosing an Optimal Demand Portfolio for Capacitated Resources," Management Science, INFORMS, vol. 46(7), pages 912-927, July.
    13. Jianfeng Zheng & Ziyou Gao & Dong Yang & Zhuo Sun, 2015. "Network Design and Capacity Exchange for Liner Alliances with Fixed and Variable Container Demands," Transportation Science, INFORMS, vol. 49(4), pages 886-899, November.
    14. Richa Agarwal & Özlem Ergun, 2010. "Network Design and Allocation Mechanisms for Carrier Alliances in Liner Shipping," Operations Research, INFORMS, vol. 58(6), pages 1726-1742, December.
    15. Marvin D. Troutt, 1995. "A Maximum Decisional Efficiency Estimation Principle," Management Science, INFORMS, vol. 41(1), pages 76-82, January.
    16. John R. Birge & Ali Hortaçsu & J. Michael Pavlin, 2017. "Inverse Optimization for the Recovery of Market Structure from Market Outcomes: An Application to the MISO Electricity Market," Operations Research, INFORMS, vol. 65(4), pages 837-855, August.
    17. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crönert, Tobias & Martin, Layla & Minner, Stefan & Tang, Christopher S., 2024. "Inverse optimization of integer programming games for parameter estimation arising from competitive retail location selection," European Journal of Operational Research, Elsevier, vol. 312(3), pages 938-953.
    2. Rui Xu & Yumiao Huang & Wei Xiao, 2023. "A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs," Sustainability, MDPI, vol. 15(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merve Bodur & Timothy C. Y. Chan & Ian Yihang Zhu, 2022. "Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1471-1488, May.
    2. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    3. Rishabh Gupta & Qi Zhang, 2022. "Decomposition and Adaptive Sampling for Data-Driven Inverse Linear Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2720-2735, September.
    4. Timothy C. Y. Chan & Tim Craig & Taewoo Lee & Michael B. Sharpe, 2014. "Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy," Operations Research, INFORMS, vol. 62(3), pages 680-695, June.
    5. Timothy C. Y. Chan & Taewoo Lee & Daria Terekhov, 2019. "Inverse Optimization: Closed-Form Solutions, Geometry, and Goodness of Fit," Management Science, INFORMS, vol. 65(3), pages 1115-1135, March.
    6. Jonathan Yu-Meng Li, 2021. "Inverse Optimization of Convex Risk Functions," Management Science, INFORMS, vol. 67(11), pages 7113-7141, November.
    7. Shi Yu & Haoran Wang & Chaosheng Dong, 2020. "Learning Risk Preferences from Investment Portfolios Using Inverse Optimization," Papers 2010.01687, arXiv.org, revised Feb 2021.
    8. Bender, Matthias & Kalcsics, Jörg & Meyer, Anne, 2020. "Districting for parcel delivery services – A two-Stage solution approach and a real-World case study," Omega, Elsevier, vol. 96(C).
    9. Jianfeng Zheng & Ziyou Gao & Dong Yang & Zhuo Sun, 2015. "Network Design and Capacity Exchange for Liner Alliances with Fixed and Variable Container Demands," Transportation Science, INFORMS, vol. 49(4), pages 886-899, November.
    10. Michael Schneider & Andreas Stenger & Fabian Schwahn & Daniele Vigo, 2015. "Territory-Based Vehicle Routing in the Presence of Time-Window Constraints," Transportation Science, INFORMS, vol. 49(4), pages 732-751, November.
    11. Ulmer, Marlin & Nowak, Maciek & Mattfeld, Dirk & Kaminski, Bogumił, 2020. "Binary driver-customer familiarity in service routing," European Journal of Operational Research, Elsevier, vol. 286(2), pages 477-493.
    12. Ghobadi, Kimia & Mahmoudzadeh, Houra, 2021. "Inferring linear feasible regions using inverse optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 829-843.
    13. Zheng, Shiyuan & Luo, Meifeng, 2021. "Competition or cooperation? Ports’ strategies and welfare analysis facing shipping alliances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    14. Zeynep Erkin & Matthew D. Bailey & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2010. "Eliciting Patients' Revealed Preferences: An Inverse Markov Decision Process Approach," Decision Analysis, INFORMS, vol. 7(4), pages 358-365, December.
    15. Karaca, Utku & Birbil, Ş. İlker & Aydın, Nurşen & Mullaoğlu, Gizem, 2023. "Masking primal and dual models for data privacy in network revenue management," European Journal of Operational Research, Elsevier, vol. 308(2), pages 818-831.
    16. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    17. Minghui Lai & Weili Xue & Qian Hu, 2019. "An Ascending Auction for Freight Forwarder Collaboration in Capacity Sharing," Transportation Science, INFORMS, vol. 53(4), pages 1175-1195, July.
    18. Bucarey, Víctor & Labbé, Martine & Morales, Juan M. & Pineda, Salvador, 2021. "An exact dynamic programming approach to segmented isotonic regression," Omega, Elsevier, vol. 105(C).
    19. Xiyuan Ren & Joseph Y. J. Chow, 2023. "Nonparametric estimation of k-modal taste heterogeneity for group level agent-based mixed logit," Papers 2309.13159, arXiv.org.
    20. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:3:p:1087-1098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.