IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i2p631-643.html
   My bibliography  Save this article

Distributionally robust equilibrium for continuous games: Nash and Stackelberg models

Author

Listed:
  • Liu, Yongchao
  • Xu, Huifu
  • Yang, Shu-Jung Sunny
  • Zhang, Jin

Abstract

We develop several distributionally robust equilibrium models, following the recent research surge of robust game theory, in which some or all of the players in the games lack of complete information on the true probability distribution of underlying uncertainty but they need to make a decision prior to the realization of such uncertainty. We start with a distributionally robust Nash equilibrium model where each player uses partial information to construct a set of distributions and chooses an optimal decision on the basis of the worst distribution rather than the worst scenario to hedge the risk arising from ambiguity of the true probability distribution. We investigate the existence of equilibrium, develop a numerical scheme for its computation, and consider special cases where the distributionally robust Nash equilibrium model can be reformulated as an ordinary deterministic Nash equilibrium. We then extend our modeling scheme to two possible frameworks of distributionally robust Stackelberg setting: a distributionally robust follower model and a distributionally robust leader model. These two frameworks are employed to study an innovative problem of hierarchical competition in a supply chain where a buyer not only invests in its own capacity to supply an end-product market under demand uncertainty but also outsources a certain amount of market supplies to multiply competing suppliers who invest in capacity for obtaining the buyer’s orders. In this application, we show that the buyer has more incentives to invest in capacity whereas the suppliers have less to do so when those suppliers are confronted with more demand uncertainty in the end-product market over the buyer.

Suggested Citation

  • Liu, Yongchao & Xu, Huifu & Yang, Shu-Jung Sunny & Zhang, Jin, 2018. "Distributionally robust equilibrium for continuous games: Nash and Stackelberg models," European Journal of Operational Research, Elsevier, vol. 265(2), pages 631-643.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:2:p:631-643
    DOI: 10.1016/j.ejor.2017.07.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171730677X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.07.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szidarovszky, F & Yakowitz, S, 1977. "A New Proof of the Existence and Uniqueness of the Cournot Equilibrium," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(3), pages 787-789, October.
    2. Kapsos, Michalis & Christofides, Nicos & Rustem, Berç, 2014. "Worst-case robust Omega ratio," European Journal of Operational Research, Elsevier, vol. 234(2), pages 499-507.
    3. Erim Kardeş & Fernando Ordóñez & Randolph W. Hall, 2011. "Discounted Robust Stochastic Games and an Application to Queueing Control," Operations Research, INFORMS, vol. 59(2), pages 365-382, April.
    4. Huifu Xu & Dali Zhang, 2013. "Stochastic Nash equilibrium problems: sample average approximation and applications," Computational Optimization and Applications, Springer, vol. 55(3), pages 597-645, July.
    5. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Erick Delage & Sharon Arroyo & Yinyu Ye, 2014. "The Value of Stochastic Modeling in Two-Stage Stochastic Programs with Cost Uncertainty," Operations Research, INFORMS, vol. 62(6), pages 1377-1393, December.
    7. Victor DeMiguel & Huifu Xu, 2009. "A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application," Operations Research, INFORMS, vol. 57(5), pages 1220-1235, October.
    8. Houyuan Jiang & Serguei Netessine & Sergei Savin, 2011. "TECHNICAL NOTE---Robust Newsvendor Competition Under Asymmetric Information," Operations Research, INFORMS, vol. 59(1), pages 254-261, February.
    9. Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
    10. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2013. "Robust Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 153-183, February.
    11. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    12. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Other publications TiSEM d718e419-a375-4707-b206-e, Tilburg University, School of Economics and Management.
    13. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    14. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    15. Zhang, Dali & Xu, Huifu & Wu, Yue, 2009. "Single and multi-period optimal inventory control models with risk-averse constraints," European Journal of Operational Research, Elsevier, vol. 199(2), pages 420-434, December.
    16. Postek, Krzysztof & Ben-Tal, A. & den Hertog, Dick & Melenberg, Bertrand, 2015. "Exact Robust Counterparts of Ambiguous Stochastic Constraints Under Mean and Dispersion Information," Discussion Paper 2015-030, Tilburg University, Center for Economic Research.
    17. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Zhaofu & Li, Mengfan & Han, Xiaoya & He, Xuhuai, 2020. "Innovative green product diffusion through word of mouth," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    2. Davide Lauria & Giorgio Consigli & Francesca Maggioni, 2022. "Optimal chance-constrained pension fund management through dynamic stochastic control," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 967-1007, September.
    3. Jie Xiong & Shuming Wang & Tsan Sheng Ng, 2021. "Robust Bilevel Resource Recovery Planning," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 2962-2992, September.
    4. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    5. Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
    6. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    7. Shen Peng & Navnit Yadav & Abdel Lisser & Vikas Vikram Singh, 2021. "Chance-constrained games with mixture distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 71-97, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    2. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    3. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    4. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    5. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    6. Weijun Xie & Shabbir Ahmed, 2018. "Distributionally robust simple integer recourse," Computational Management Science, Springer, vol. 15(3), pages 351-367, October.
    7. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    8. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Discussion Paper 2016-039, Tilburg University, Center for Economic Research.
    9. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    10. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    11. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.
    12. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    13. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    14. Vincent Tsz Fai Chow & Zheng Cui & Daniel Zhuoyu Long, 2022. "Target-Oriented Distributionally Robust Optimization and Its Applications to Surgery Allocation," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2058-2072, July.
    15. Qiaoming Han & Donglei Du & Luis F. Zuluaga, 2014. "Technical Note---A Risk- and Ambiguity-Averse Extension of the Max-Min Newsvendor Order Formula," Operations Research, INFORMS, vol. 62(3), pages 535-542, June.
    16. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    17. Yongchao Liu & Alois Pichler & Huifu Xu, 2019. "Discrete Approximation and Quantification in Distributionally Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 19-37, February.
    18. Zhen, Jianzhe & den Hertog, Dick, 2015. "Robust Solutions for Systems of Uncertain Linear Equations," Other publications TiSEM d072bdb9-4168-4522-90d8-1, Tilburg University, School of Economics and Management.
    19. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    20. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:2:p:631-643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.